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Abstract

A new approach to the systematic development of dynamic programming
algorithms is presented and applied to RNA folding. Analyses of the po-
tential foldings of an RNA molecule have mainly been restricted to energy
minimization over all feasible secondary structures. In order to develop more
specific analyses, we split up the traditional dynamic programming approach
into a structure recognition and an evaluation phase. Regular tree gram-
mars are used to describe the recognized class of structures. This allows to
analyse for presence (or even absence) of very specific structures in the fold-
ing space of an RNA molecule. An EBNF-like notation for tree grammars
is developed. It turns into a recognizer by interpreting the EBNF-operators
as parser combinators; the polynomial efficiency of dynamic programming
is regained by the introduction of tabulating yield parsers.

By abstraction from the result constructors of a recognizer, we obtain an ab-
stract folding space evaluator, described in terms of higher-order functions.
It can be instantiated towards any kind of analysis that can be specified by
a so-called folding space evaluation algebra. Given such an instantiation, a
first order implementation – i.e. a correct and efficient set of dynamic pro-
gramming recurrencies – can be derived by straightforward mathematical
reasoning. Overall, this results in a modular approach – different recogniz-
ers and different analyses can be combined freely.
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1 Motivation and Overview

1.1 Statement of problem

Dynamic programming (DP) is probably the most popular programming
technique in bioinformatics. It is used for the many variations of sequence
comparison and alignment [12, 22, 32], for DNA fragment assembly [1], RNA
folding [23, 38], structure comparison [31], gene recognition [8, 33] and a mul-
titude of further applications. For a recent overview of basic and advanced
techniques, see [2] and therein [9]. In some research contexts, a large num-
ber of such programs must be developed; the Dynamite system [5] has been
designed to support the implementation of sequence comparison algorithms
based on dynamic programming. The present article is devoted to the prob-
lem of developing DP algorithms in the area of RNA secondary structure
determination.

1.2 Sketch of results

We show how the development of dynamic programming algorithms can
be done in a completely declarative way, using a conceptual separation of
a structure recognition and a structure evaluation phase. In our applica-
tion context, varying classes of RNA secondary structures are described by
regular tree grammars over an algebraic data type FS, which represents
structures explicitly. We introduce tabulating yield parsers, which recog-
nize structures efficiently. The evaluation phase is specified separately by
an FS-algebra. Via abstraction and instantiation we obtain a (higher-order)
functional program for the desired analysis. It serves as an executable spec-
ification, and as a template from which the typical DP recurrencies can be
derived in a systematic way. The explicit structure representation cancels
out, the separation of the two phases becomes invisible, and no overhead in
terms of efficiency is incurred.

With respect to RNA folding, our method allows to derive efficient DP so-
lutions for a large and well-defined class of analyses, in a systematic way.
The method certainly can be adapted to other application domains of DP
in bioinformatics (although this has not been studied yet). Aside from the
advantages with respect to program correctness and development time that
come along with a declarative approach, our method also provides re-use
of algorithms. While the derived DP-programs are monolithic, their spec-
ifications consists of two separate phases. g tree grammars over FS and
l FS-algebras can be combined to g ∗ l different analyses. This should be
beneficial to bioinformatics research that includes substantial explorative
programming.
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1.3 Related work

The advantages of a declarative approach to biosequence analysis have been
explicated most influentially by Searls [28–30]. In his recent review [27],
Searls discusses different approaches to the gene prediction problem in the
presence of introns. Although gene structure can be described by a context
free grammar and hence can be recovered by parsing methods, Searls feels
that DP methods such as used in [8, 33] may have an inherent efficiency
advantage:

“Although parsing of context-free languages can be performed
with similar efficiency, the problem of examining all parses, where
there may be an exponential number of them, may be intractable
even so.” [27]

This fear of exponential explosion is appropriate as long as we keep the pars-
ing and the examination phase separate. But given the technique developed
in this article, the grammar based and the DP approach achieve the same
asymptotic effeciency, and should not longer be seen as competing methods.
Rather, the declarative approach must be recognized as the explanation of
the DP approach on a higher level of abstraction.

Lefebvre has used parsing techniques and attributed context free grammars
for RNA folding [19, 20]. This has resulted in a folding program based on
energy minimization and parser generation technology. It has been reported
to achieve efficiency similar to DP algorithms. Attribute grammars (as used
in a simple form by Lefebvre) have taken a long time to get accepted as a
declarative description technique in the compiler construction community;
in our opinion, they are still too low-level a formalism to be useful as a
program development methodology in bioinformatics. By contrast, all the
parsing technology required by our approach is completely described in a
small section of this article.

The Dynamite system [5] provides a code generation language for dynamic
programming recurrencies, while our approach is concerned with their de-
velopment. Although the system can be of great benefit to the expert, it has
not (yet) found the widespread use one might expect. One reason certainly
is that the development of correct dynamic programming recurrencies is at
least as difficult as their faithful implementation in (say) C. Our approach
and the Dynamite system are complementary, although the application do-
mains considered here and in [5] are different.

1.4 Dynamic programming as a programming paradigm

The general idea of dynamic programming is to split a large search space into
intermediate stages, whose results are tabulated and re-used many times.
This allows to analyse an exponential search space in polynomial time. It
takes some creative effort to design the tables of intermediate results, and
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define the recurrencies that relate their entries. Once the recurrencies are
given, the overall algorithm typically consists of a few nested for-loops, in
which the recurrencies are embedded. Matrices appear to be the dominant
data structure in DP, whereas the individual solutions that make up the
search space are not given an explicit representation.

In spite of its importance, and in contrast to paradigms like “Structural
Recursion” or “Divide-and-Conquer”, “Dynamic Programming” is not a first
principle of algorithmics, but rather a composite of three simpler techniques:

1. structure recognition, i. e. the construction of the search space of all
potential solutions, usually achieved by structural recursion over the
input,

2. evaluation of individual solutions, usually achieved by structural recur-
sion over the solutions, and a selection of solutions based on evaluation
results,

3. tabulation and re-use of partial evaluation results.

Example 1 Consider the calculation of an optimal pairwise sequence align-
ment. According to the separation of three techniques, we write a recognizer,
which constructs all alignments of two sequences, by structural recursion
over the two sequences. We write an evaluator, which evaluates each align-
ment according to a given score function, this time by structural recursion
over the alignment, and determines the minimal score. At this point, we
would have a declarative approach, directly corresponding to the mathe-
matical definition of an optimal alignment. Since the number of alignments
grows exponentially with the length of the sequences, this approach has
exponential execution time.

The only, albeit essential contribution that tabulation brings about is that
all intermediate results – i.e. the alignments of all pairs of prefixes of the
two sequences – are evaluated just once. This guarantes polynomial runtime.
In fact, an explicit presentation of the prefix alignments need not even be
calculated, since their scores are all that needs to be stored. 2

The essence of these observations is that in the final implementation of
a dynamic programming algorithm, the logic that lies behind it has been
obscured for the sake of efficiency. This may not seem much of a problem for
a simple task like pairwise alignment. But in general, should we do program
development in such obscurity?

1.5 RNA folding via dynamic programming

RNA folding programs based on energy minimization have been around since
the initial work of Zuker [36, 38]. In spite of all their limitations (related
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to poorly defined energy minima, inability to detect non-planar structures,
effects of kinetic folding, switching phenomena in RNA), they have become
widely used tools for RNA structure exploration. While there are programs
based on simulated annealing [26], genetic algorithms [13], and random helix
sampling [21], the classical approach is based on DP. A recent introductory
exposition is given in [34]. Two widely used implementations, MFOLD [36]
and the VIENNA RNA package [15] offer RNA folding via energy minimiza-
tion, and further related functionality.

These folding programs can also calculate suboptimal structures, but the
possibly interesting structures are drowned in an ocean of structures that
differ only trivially. This severely limits the use of folding programs for
detailed analysis. For example, Giegerich et al. have recently developed
the paRNAss tool for the prediction of conformational switching in RNA
[11]. Due to the lack of techniques to test specific hypotheses about the
folding space, a sampling procedure was adopted, which is very expensive
computationally.

The approach developed here will allow – among other kinds of analyses
— to do energy minimization over very specific subclasses of all possible
foldings of a given RNA molecule.

1.6 Reading this article

Since our approach is presented here for the first time, we try to give a
complete account of both its algorithmic background and its potential ap-
plications. The structure of this article supports three ways of reading. In
order to address readers both from a biology and a computer science back-
ground, our technique is developed gradually, by means of small changes to
a realistic example application.1 However, readers mainly interested in new
variants of the RNA folding problem that can be tackled with our approach
may skip Section 3 and Section 6. On the other hand, for readers mainly
interested in programming methodology, Sections 3 and 6 contain the core
of our approach.

2 Tree Grammars for RNA Secondary Structure

2.1 Notation

Let x be an RNA sequence given as a list or an array of characters, indexed
by 1 through n. Characters are taken from the alphabet {a, c, g, u}, denoting
the four bases adenine, cytosine, guanine and uracil. We adopt the view that
indices also denote boundaries between subwords, in the form of 0x1x2...xn.
This view avoids fiddling with +1 or −1, as subwords of x are designated

1This may lead to some redundancy, but we feel that it is important that all the
specifications given here, including the intermediate steps, are complete (and executable).
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by their boundaries. If x = "justice", then "just" is subword (0,4), and
"ice" is subword (4,7). The length of subword (i,j) is j - i, and the
concatenation of subwords (i,j) and (j,k) is subword (i,k).

A convenient notation for higher order functions is essential for our approach.
Well-known notations such as the λ-calculus or LISP are inappropriate due
to their lack of support for data structures. We therefore borrow some nota-
tion from a modern functional language, Haskell [4, 16]. We shall avoid any
Haskell notation that goes beyond algebraic data types, lists, and equations
defining higher order functions. We shall present the development of non-
trivial specifications in successive stages; lines marked > are part of a final
(executable) specification.

2.2 An algebraic data type representing RNA structures

RNA secondary structure results from hydrogen bonding between base pairs
(c − g), (a − u), and (g − u), and from energetically favourable base pair
stacking. We use an algebraic data type FS for the representation of RNA
secondary structures. FS stands for Folding Space, as we use it to repre-
sent the potential foldings of a given RNA molecule. A structure generally
consists of a list of structural components, where each component is either a
single strand (SS), a hairpin loop (HL), a stacking region (SR), a left or right
bulge (BL, BR), an internal loop (IL) or a multiloop (ML). By definition,
components HL, SR and ML include their closing base pair.

Definition 2 An algebraic data type FS is defined as follows:

> type Base = Char

> type Region = (Int,Int)

> data FS = STRUCT [Component]

> data Component =

> SS Region |

> HL Base Region Base |

> SR Base Component Base |

> BL Region Component |

> BR Component Region |

> IL Region Component Region |

> ML Base [Component] Base

2

Notation: In our notation, constructors and type names (and only these) start with

a capital letter. [ t ] denotes a list type with element type t. Lists are assumed to be

predefined. List constructors are [ ] (empty list), and (:) (attaching an element at the

head of a list). The notation [1,2,3] is a shorthand for 1:2:3:[ ]

In the theory of programming, a data type like FS is called algebraic, be-
cause it defines a language of formulas which denote its elements, e.g.

> s1 = STRUCT [SS (0,3),
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Figure 1: A structure drawing for “aaccgaucaaaugcgcccg”

> SR ’c’ (SR ’g’(BL (5,7) (HL ’c’ (8,12) ’g’)) ’c’) ’g’,

> SS (15,19)]

Structures can be visualized as trees or drawings as in Figure 1.

The yield of a tree is the sequence of its leaves, in left-to-right order. The
yield function is defined via structural recursion:

> yield (STRUCT es) = concat (map yield es) where

> yield (SS r) = subword r

> yield (HL a r b) = [a] ++ subword r ++ [b]

> yield (SR a e b) = [a] ++ yield e ++ [b]

> yield (BL r e) = subword r ++ yield e

> yield (BR e r) = yield e ++ subword r

> yield (IL l e r) = subword l ++ yield e ++ subword r

> yield (ML a es b) = [a] ++ concat (map yield es) ++[b]

Notation: This example introduces almost all the Haskell notation we shall need.
Function application is generally written f x y rather that f(x,y). The symbol where
opens a local scope (delineated by indentation). [a] denotes a list with a single element,
++ appends two lists, concat concatenates a list of lists, and map f l applies function f

element-wise to the list l. A function subword is assumed such that subword(i,j) yields
the actual character representation of the indicated subword.

Definition 3 Let s be a value of type FS , and x be a sequence of bases.
Then s is a structure for x iff yield(s) = x. 2

While it is clearly possible to represent all planar RNA structures in FS,
the converse is not true. There are some values which we would not accept
as biologically sensible (sub)structures. Three examples are
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> s2 = STRUCT [SS (0,2), SS (2,4)]

> e1 = BL (0,2) (BR ( HL ’c’ (3,5) ’g’ ) (6,7))

> e2 = ML ’a’ [SS (1,3), HL ’c’ (4,7) ’g’, SS (8,10)] ’u’

In s2, the two adjacent single strands should be combined into a single one.
In e1, the left and adjacent right bulge should combine to an internal loop.
Also, the hairpin loop should contain at least three bases. Structure compo-
nent e2 is not rightfully called a multiloop; as such it should be branching,
which requires at least two components which are not single strands. Simi-
lar, but correct structures are

> s2’ = STRUCT [SS (0,4)]

> e1’ = IL (0,2) (HL ’c’ (3,6) ’g’) (7,8)

> e2’ = ML ’a’ [SS (1,3), HL ’c’ (4,7) ’g’, SS (8,10), HL ’a’ (11,14) ’u’] ’u’

We conclude that the algebraic data type FS is too simple to represent
exactly the biologically sensible structures. We have to resort to more ex-
pressive description techniques.

2.3 A regular tree grammar for all feasible structures

RNA structures (excluding pseudoknots) can be described by context free
grammars. Such a description is used in [19, 25, 27]. Structures, then, are the
derivation trees resulting from parsing an RNA sequence [19, 20]. Context
free grammars clearly define the language of strings derived by the grammar,
but the language of derivation trees is implicit. As we shall see, it is much
more convenient to use tree grammars instead of string grammars to describe
languages of RNA secondary structures.

Definition 4 A (regular) tree grammar is a context free grammar, where
the righthand sides of the productions are trees. These trees are formed by
the constructors of an underlying algebraic data type, and from nonterminal
grammar symbols. The nonterminal symbols are only allowed at the leaves.
The language L(G) of a tree grammar G is the set of all trees (or formulas)
of the underlying algebraic data type that can be derived from the axiom.
The yield language of a grammar is defined by Y(G) = {yield(t) | t ∈ L(G)}.
2

The tree grammar Gfeasible introduces the following syntactic refinements
over the type FS.

1. Lists of components must not contain two adjacent single strands.
2. We distinguish open structure components from those closed by a base

pair. We ensure that bulges and internal loops are separated by at least
one base pair.

3. We ensure that the component list of a multiloop contains at least two
closed substructures.

4. The region of HL must have at least 3 bases.
5. Bases must form legal base pairs with HL, SR, and ML.
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Restrictions (1) – (3) are directly modeled by the grammar Gfeasible. Re-
strictions (4) and (5) could be modelled within the productions of the gram-
mar, but it would be cumbersome to do so. They are more conveniently
expressed by predicates match and minloopsize to be associated with the
corresponding productions.

> pair (’a’,’u’) = True

> pair (’u’,’a’) = True

> pair (’u’,’g’) = True

> pair (’c’,’g’) = True

> pair (’g’,’c’) = True

> pair (’g’,’u’) = True

> pair (’u’,’g’) = True

> pair ( x , y ) = False

> match inp (i,j) = i+1<j && pair (inp!(i+1), inp!(j))

> nomatch inp (i,j) = not (match inp (i,j))

> minloopsize k (i,j) = (j-i >= k)

Definition 5 The grammar Gfeasible is defined as follows:

1. The underlying data type is FS with its constructors HL, SR, ML,
BL, BR, IL, STRUCT, :, [ ].

2. Nonterminal symbols are { struct, components, closedcomponents,
closed, open, ml components, ml closedcomponents, ml components1,
ml closedcomponents1}

3. Terminal symbols are {base, region }
4. The axiom is struct.

5. The productions of Gfeasible are given in Figure 2.

L(Gfeasible) is the language of feasible RNA structures. 2

It is easy to verify that s1 is an element of L(Gfeasible), while s2, e1, e2
are not.

2.4 The descriptive power of regular tree languages

Formal language theory teaches us [6] that languages defined by regular
tree grammars share the properties of regular languages — they are closed
under union, intersection and complement2. For example, we may design
a grammar that describes only cloverleaf structures (Section 7.3) – as well
as one that comprises all structures except cloverleaves. It seems that with
regular tree grammars, we have all the descriptive freedom we can think

2This is yet another reason not to use string grammars to describe RNA structure.
Context free string grammars are required to describe base pairing. But context free
languages, as is well known, are neither closed under complement, nor under intersection.
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of. And of course, the more specific our descriptive mechanism is, the more
specific questions about RNA structures we may ask.

The standard parsing problem for tree grammars takes a tree as its input
and determines its derivations according to the grammar. This has appli-
cations in compiler code generation, mapping expression trees to machine
instructions [3, 10]. However, the efficient parsing technology that has been
derived in that context cannot be used here: Our problem at hand takes the
yield of a tree as its input, and asks for all possible trees for this yield. We
call this the yield parsing problem.

3 Tabulating Yield Parsers

This section introduces tabulating yield parsers, which efficiently solve the
yield parsing problem by dynamic programming. The way in which this is
achieved is central to our approach, but readers who are more curious about
RNA folding might jump ahead to the next chapter, returning later to the
aspects of parser implementation and efficiency.

3.1 An EBNF-style notation for tree grammars

Extended Backus-Naur Form (EBNF) is a convenient notation for context-
free string grammars, most widely known for its use in the definition of
programming language syntax. EBNF-expressions are built from terminal
and nonterminal symbols, juxtaposition, and operators for alternative and
iterated constructs. We develop an EBNF-like notation for tree grammars,
where we use the operator ~~~ and its variants +~~ and ~~+ for juxtaposition,
||| for alternatives, and <<< for the application of a tree constructor to its
arguments.

For convenience, we assign priorities to these infix operators, highest for <<<
and lowest for |||. Also, ~~~ and its variants associate to the left, while
||| associates to the right. Nonterminal symbols are written in lower case,
while the tree constructors of the underlying data type start with a capital
letter. The start symbol of the grammar is prefixed by the word axiom.

Let us consider a toy subset of Gfeasible, essentially two productions for the
nonterminal symbol closed, plus another one for open to make the language
non-empty. See Figure 3.

In our notation, these productions are written like this:
closed = HL <<< base ~~~ region ~~~ base |||

SR <<< base ~~~ open ~~~ base

open = BR <<< closed ~~~ region

Further syntactic restrictions can be associated by a with-clause, either with
a symbol, or a larger expression on the righthand side. Our example now
reads
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closed = (HL <<< base ~~~ (region ‘with‘ minloopsize 3) ~~~ base |||

SR <<< base ~~~ open ~~~ base)

‘with‘ basepair

open = BR <<< closed ~~~ region

where minloopsize checks the length of the region, and basepair checks
that the enclosing bases can actually pair. Note that this check applies to
both alternatives of the production.

We now turn to the problem of recognizing the yields of a tree grammar. At
the end of this chapter, the above grammar description itself (with minor
notational amendments) will prove to be an efficient yield parser.

3.2 Yield parsers and their combinators

Definition 6 The yield parsing problem for a tree grammar G is the follow-
ing: Given a string y of terminal symbols, find all trees t ∈ L(G) such that
yield(t) = y. 2

Combinator parsing [17, 18] is an elegant technique which directly turns a
context free grammar into a nondeterministic, top-down parser. We adjust
this technique to the yield parsing problem. We need to impose one re-
striction on G: A grammar is well-formed, if there is no circular chain of
productions that does not contribute symbols to the yield. Such a chain
would imply an infinite number of parses for some string, and an infinite
loop in the parser. These chains can be avoided easily.

A parser is a function that given a subword (i,j) of the input inp, returns
a list of all its parses.3 If the parse fails, this list is empty. Each parser
parses for a specific nonterminal or terminal symbol, hence the result type
of the parser varies. In other words, the type Parser is polymorphic. In the
following type definition, b is a parameter standing for an arbitrary element
type in the result list of a parser.

> type Parser b = (Int,Int) -> [b]

3In contrast to the string parsers in [17], our parsers must completely consume the
subword; no unparsed input suffix is returned.
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First we define some elementary parsers:

anyChar recognizes any subword of length one.

> anyChar :: Array Int Char -> Parser Char

> anyChar inp (i,j) = [inp!j | i+1==j]

Notation: The definition of anyChar uses a list comprehension and is to be read as

follows: if the subword holds just one Character, anyChar returns it as the (only) result;

otherwise it returns an empty result list.

Next we define two recognizers for parsing the empty yield into an empty list
(of arbitrary element type), and for parsing an arbitrary, non-empty region,
returning its subword boundaries as the result:

> p_empty :: Parser [b]

> p_empty (i,j) = [[] | i == j]

> p_region :: Parser (Int,Int)

> p_region (i,j) = [(i,j) | i < j]

The nonterminals of our grammar will now be interpreted as parsers, the
productions serving as their mutually recursive definitions. To achieve this,
the operators of our EBNF-like notation are given a meaning as parser
combinators, i. e. higher order functions that combine complex parsers from
simpler ones. ||| concatenates result lists of alternative parses, and <<<
grabs the results of subsequent parsers connected via ~~~ and sucessively
“pipes” them into the tree constructor4.

> (|||) :: Parser b -> Parser b -> Parser b

> (|||) r q (i,j) = r (i,j) ++ q (i,j)

> (<<<) :: (b -> c) -> Parser b -> Parser c

> (<<<) f q (i,j) = map f (q (i,j))

> (~~~) :: Parser (b -> c) -> Parser b -> Parser c

> (~~~) r q (i,j) = [f y | k <- [i..j], f <- r (i,k), y <- q (k,j)]

Notation: The definition of <<< relies on the fact that all our multi-argument functions

are curried: For example, the three-argument function SR, when given a single argument a,

returns the function (SR a) which expects to consume two further arguments , say r and

b to ultimately yield the result SR a r b. Correspondingly, the combinator ~~~ assumes

that the results of its first argument, the parser r, are functions that expect to consume

the results from the second argument, parser q. The righthand side of ~~~ is defined via

a list comprehension, and reads in words: That list of all f applied to all y, such that f

results from parser r applied to subword (i,k), y results from parser q applied to subword

(k,j), and k ranges from i through j.

The operational meaning of a with-clause can also be conveniently defined
by turning with into a combinator, this time combining a parser with a
filter.

4Readers familiar with [17] will notice that <<< is our version of the using- combinator.
It avoids the inconvenient tupling of intermediate parser results and (un-)currying tree
constructors.
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> type Filter = (Int,Int) -> Bool

> with :: Parser b -> Filter -> Parser b

> with p c (i,j) = if c (i,j) then p(i,j) else []

Notation: The last equation reads: The parser with p c applied to subword (i,j)

returns the result of p (i,j) if the subword (i,j) satisfies condition c; otherwise it fails.

Finally, the keyword axiom of the grammar is interpreted as a function that
returns all parses for the startsymbol (q) and a prefix of length n of the
input.

> axiom :: Int -> Parser b -> [b]

> axiom n q = q (0,n)

With a few changes, the grammar for toy structures now turns into a parser:
The grammar name becomes a function, with the input array as its argu-
ment. The parser has a little prolog, which determines the length of the
input and directs the parsers for terminals to the input. The productions of
the grammar remain unchanged.

> toy_structure inp = axiom n closed where

> (_,n) = bounds inp

> p_base = anyChar inp

> basepair = match inp

> closed = (HL <<< p_base ~~~ (p_region ‘with‘ minloopsize 3) ~~~ p_base |||

> SR <<< p_base ~~~ open ~~~ p_base)

> ‘with‘ basepair

> open = BR <<< closed ~~~ p_region

This version of the grammar can be executed as a parser, albeit a highly
inefficient one.

3.3 Tabulating (deterministic) yield parsers

In general, a parser like toy structures developed so far will run effeciently
only for grammars where the parse proceeds in a deterministic fashion. For
ambiguous grammars, the parser will generally take exponential time, as
the parse of a subword is repeatedly constructed in the course of different
derivations.

The remedy is tabulation: For a nonterminal X, we introduce an (n + 1) by
(n + 1) array X. Whenever a subword (i,j) is parsed into a nonterminal X,
the results are tabulated as table entry X!(i,j). The operator ! is used to
distinguish the call to a tabulated function — i. e. array indexing — from a
normal function call X(i,j).

Alternative derivations then re-use the results of the parse rather than recon-
structing it. This is the general idea of the dynamic programming paradigm:
By storing and re-using partial results, we invest polynomial space for avoid-
ance of exponential runtime.
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In our framework, this step is amazingly simple: we introduce two functions
table and p. table n q records the results of parser q for all subwords of
an input of length n in a parser table of suitable size. Conversely, p t (i,j)
looks up the results stored in parser table t for subword (i,j). Note that
the expression p t, where t is a parser table, is itself of type Parser b.

> type Parsetable b = Array (Int,Int) [b]

> table :: Int -> Parser b -> Parsetable b

> table n p = array ((0,0),(n,n))

> [((i,j), p(i,j)) | i <- [0..n], j <- [i..n]]

> p :: Parsetable b -> Parser b

> p t (i,j) = if i <= j then (t!(i,j)) else []

Notation: The function array creates an array with the index range as given by its

first argument. It initializes the array elements according to the index-value pairs in the

second argument. Note that we leave the array undefined for j<i.

Some parsers only do a constant amount of work, e.g. for chain productions
like X = Y, or for X = c <<< Y, where the righthand side only applies a
unary constructor to the results of some other parser. In such cases, it is
not worthwhile to store the results of these parsers in a table. We introduce
the following convention: A parser for nonterminal X will either be written
p X, in which case it will be defined as a parsing function as before. Else, it
will be written p X, in which case X is a parse table for nonterminal X and p
is the table lookup function defined above. The tabulating yield parser for
toy structures now takes the form

> toy_structure’ inp = axiom n (p closed) where

> (_,n) = bounds inp

> p_base = anyChar inp

> basepair = match inp

> tabulated = table n

> closed = tabulated

> ((HL <<< p_base ~~~ (p_region ‘with‘ minloopsize 3) ~~~ p_base |||

> SR <<< p_base ~~~ p open ~~~ p_base) ‘with‘ basepair)

> open = tabulated

> (BR <<< p closed ~~~ p_region)

Annotation by the clause tabulated and the consistent distinction of tab-
ulated and nontabulated parsers via the p X resp. p X convention is all we
need to obtain a parser with polynomial efficiency.

3.4 Asymptotic efficiency of tabulating yield parsers

The asymptotic worst-case efficiency of tabulating yield parsers is affected
by the size of the input, the size of the output, and the complexity of the
grammar. An input of length n has O(n2) subwords to be parsed. Let s be
the number of nonterminals in the tree grammar. Let us assume that for all
nonterminals X where the parsing effort for a given subword is not bounded
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by a constant, the tabulating implementation is chosen in the yield parser.
Let there be t tabulated nonterminals. We assume that each element in a
parser’s result list occupies constant space, using pointers to its components
rather than copying them. Let l be the maximal number of elements in the
result list of a parser. Well-formedness of the grammar ensures that l is
finite.

The space requirement for the parser is O(t ∗ n2 ∗ l). Hence, the space
requirement is polynomial in the size of the input and the grammar. It is
linear in the size of the answer. This implies, of course, that we actually
need exponential space if there is an exponential number of parses. But
note that l turns into a constant when only a yes/no answer or a bounded
number of parses is returned. In this case, the overal space requirements
reduce to O(t ∗ n2).

The essential observation about time complexity is that each occurence of
the ~~~-operator in the righthand side increases the the exponent of n by 1.
This is because p ~~~ q iterates over all possible boundaries between the
subwords recognized by either parser. This is necessary for nonterminals
that can actually derive yields of unbounded length. On the other hand,
for nonterminals which can derive only a fixed-length yield, most of this
iteration will be a futile effort, and it can be avoided by modified variants
of the ~~~-combinator. The same trivially holds with respect to terminal
symbols. We will show how to implement this idea in Section 3.5.

Let the width of a tree production be defined by the number of nonterminals
on its righthand side which produce an unbounded yield. Let the width of a
tree grammar be the maximal width of its productions. Let w be the width
of the grammar, and again let us assume that constant effort is needed to
apply a tree constructor when piecing together a result. Then, the worst-
case time complexity of a tabulating yield parser is O(t ∗ nw+1 ∗ l).

In fact, the exponent w + 1 can be fixed to 3 at the expense of increasing t.
We sketch the general technique by means of an example: Let u,v,w be tree
parsers, tabulated or not. We give two equivalent definitions for a parser x
built from u,v,w and tree constructor c.

x = c <<< u ~~~ v ~~~ w

x = c’ <<< p z ~~~ w where

z = tabulated (combine <<< u ~~~ v)

c’ (u,v) w = c u v w

combine u v = (u,v)

Thus, by introducing an auxiliary nonterminal z, a production for z deriv-
ing u ~~~ v and using an auxiliary constructor combine, and a tabulating
parser for z, the width of the production for x is reduced to 2.

Summing up we may state: A yield parser for a well-formed and width-
reduced tree grammar G is implemented by our technique in O(t∗n2∗l) space
and O(t ∗ n3 ∗ l) time, where t is bounded by the number of nonterminals,
n is the length of the input string, and l is the answer size.

19



3.5 Yield parser combinators for bounded yields

If the length of the yield of a nonterminal X is restricted to a known interval,
the ~~-combinator maybe used to restrict the parsing effort to subwords of
appropriate length range.

> (~~) :: (Int,Int) -> (Int,Int) -> Parser (b -> c) -> Parser b -> Parser c

> (~~) (l,u) (l’,u’) r q (i,j)

> = [x y | k <- [max (i+l) (j-u’) .. min (i+u) (j-l’)],

> x <- r (i,k), y <- q (k,j)]

>

The combinators +~~ and ~~+ are special cases of the ~~~ combinator in
another way: they restrict the lefthand (respectively righthand) parser to a
single character.

> (+~~) q r (i,j) = [x y | i<j, x <- q (i,i+1), y <- r (i+1,j)]

> (~~+) q r (i,j) = [x y | i<j, x <- q (i,j-1), y <- r (j-1,j)]

Note in accordance with our discussion in section 3.4 that a parser q +~~ r
has the same asymptotic efficiency as r by itself, and likewise for r ~~+ q.
The parser for toy expressions may now be written more efficiently:

> toy_structure’’ inp = axiom n (p closed) where

> (_,n) = bounds inp

> p_base = anyChar inp

> basepair = match inp

> tabulated = table n

> closed = tabulated

> ((HL <<< p_base +~~ (p_region ‘with‘ minloopsize 3) ~~+ p_base |||

> SR <<< p_base +~~ p open ~~+ p_base) ‘with‘ basepair)

> open = tabulated

> (BR <<< p closed ~~~ p_region)

As can be seen from this example, using ~~+ and +~~ wherever appropriate
eliminates many uses of ~~~ that would otherwise call for width reduction.

4 Folding Space Enumerators

4.1 Tree grammar notation: A short summary

For readers who may have skipped Section 3, we summarize the notation that
has been developed: Consider the first and third alternative for nonterminal
closed in grammar Gfeasible. These tree grammar productions will now be
written by means of the combinators <<<, ~~~, and ||| in the following
form:

closed = HL <<< base ~~~ region ~~~ base |||

SR <<< base ~~~ open ~~~ base
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<<< denotes application of a tree constructor to its arguments, which are
separated by ~~~, and ||| separates alternative righthand sides. Priorities
of these operators are conveniently designed, so we do not need to write
parentheses in a simple case like this.

Further syntactic restrictions can be associated by a with-clause, either with
a symbol, or a larger expression on the righthand side. Our example now
reads

closed = (HL <<< base ~~~ (region ‘with‘ minloopsize 3) ~~~ base |||

SR <<< base ~~~ open ~~~ base)

‘with‘ basepair

where minloopsize checks the length of the region, and basepair checks
that the enclosing bases can actually pair. Given the operational combinator
definitions of Section 3, a grammar in this style can be executed as a parser,
although a highly inefficient one. We introduce some effciency annotation in
the grammar: The clause tabulated indicates that parser results for a given
nonterminal should be stored in a table. Whether or not a nonterminal X
is tabulated will henceforth be distinguished in our notation writing p X or
p X, respectively. Now our example grammar reads

closed = tabulated

((HL <<< p_base ~~~ (p_region ‘with‘ minloopsize 3) ~~~ p_base |||

SR <<< p_base ~~~ p open ~~~ p_base)

‘with‘ basepair)

Such annotations do not affect the language described by a grammar, and
when designing or first reading of a grammar, they can be ignored. The
same holds for combinators +~~, ~~+, ~~, which are equivalent to ~~~ in
the declarative semantics of the grammar. Section 3 shows that any tree
grammar G written in this style can be executed as an efficient recognizer
of Y(G). This concludes our notational summary.

4.2 Folding space enumerators

A folding space enumerator is a function that given an RNA sequence, de-
termines all its structures according to a grammar G. With the notation
developed in Section 3, our grammars for RNA structures turn into folding
space enumerators. The only matter of choice is which intermediate results
to tabulate. For Gfeasible, we will tabulate for all nonterminals except struct
and singlestrand. Parsers for terminal symbols never tabulate.

> feasibles inp = axiom n p_struct where

> (_,n) = bounds inp

> tabulated = table n

> basepair = match inp

> p_struct = STRUCT <<< p components

>

>
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> components = tabulated

> ( p_empty |||

> p closedcomponents |||

> (:[ ])<<< p_singlestrand |||

> (:) <<< p_singlestrand ~~~ p closedcomponents)

> p_singlestrand = SS <<< p_region

> closedcomponents = tabulated

> ((:) <<< p closed ~~~ p components)

> closed = tabulated

> ( (hairpin ||| stack ||| iloop ||| multiloop)

> ‘with‘ basepair)

> where hairpin = HL <<< p_base +~~ (p_region ‘with‘ minloopsize 3) ~~+ p_base

> stack = SR <<< p_base +~~ p closed ~~+ p_base

> iloop = SR <<< p_base +~~ p open ~~+ p_base

> multiloop = ML <<< p_base +~~ p ml_components ~~+ p_base

> open = tabulated

> (bulgeleft ||| bulgeright ||| doublebulge)

> where bulgeleft = BL <<< p_region ~~~ p closed

> bulgeright = BR <<< p closed ~~~ p_region

> doublebulge = IL <<< p_region ~~~ p closed ~~~ p_region

> ml_components = tabulated

> ( (:) <<< p_singlestrand ~~~ p ml_closedcomponents |||

> p ml_closedcomponents)

> ml_closedcomponents = tabulated

> ( (:) <<< p closed ~~~ p ml_components1)

> ml_components1 = tabulated

> ( (:) <<< p_singlestrand ~~~ p closedcomponents |||

> p closedcomponents)

> p_base = anyChar inp

This tree parser constructs seven tables rather than the two we know e.g.
from energy minimization [34]. This is because we collect most detailed
information about different substructures. These seven tables encode an ex-
ponential answer space, but unless we insist on printing out all the answers,
this parser only requires O(n2) space.

4.3 Uniqueness of structures

By a straightforward induction on the derivation length we can show that
grammar Gfeasible is non-ambiguous: There is just one derivation for each
structure in L(Gfeasible). By the very same proof, all structures enumerated
by the folding space enumerator are unique.

This is a very useful property of the recognition phase, for example when it
comes to enumerating or collecting statistics about suboptimal foldings in
an energy minimization context. All the more refined recognizers in later
sections will share this property.
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5 Abstract RNA Folding Space Evaluators

Recalling our decomposition of dynamic programming into simpler tech-
niques as laid out in Section 1.4, we find that so far we have solved the
structure recognition and the tabulation problem. The evaluation phase
was trivial - we merely built the recognized structures.

5.1 RNA folding space evaluation algebras

We now direct our attention to the evaluation phase. Our approach is ap-
plicable whenever an analysis of RNA folding spaces can be cast in the
following framework:

Definition 7 An RNA folding space evaluation algebra (FS-algebra for
short) is given by

1. a data type Ans of answers, representing the results of the analysis,

2. a redefinition of the parsers for terminal symbols, to return results of
type Ans,

3. a specific evaluation function c for each constructor5 C of FS , cal-
culating answers for a particular construct from the answers for its
components, according to the scheme of structural recursion,

4. a list evaluation function pp that summarizes or selects from a list of
answers.

By convention, the evaluation functions take the names of the corresponding
constructors of FS in lower case letters, hl for HL, sr for SR, and so on. We
use ul (unit list) and cons as abstract names for (:[ ]) and (:). 2

We sketch three examples of FS-algebras:

1. Energy minimization: Ans is the type of real numbers, representing
free energy values. hl, sr etc. are the energy rules for hairpin loops,
base pair stacking, etc. [34], and pp is mimimization over a list of
energy values.

2. Counting (sub)structures: Ans is the type Int, representing substruc-
ture counts. hl, sr etc. multiply the structure counts of their con-
stituents, and pp is summation of counts for alternative structures.
This counting FS-algebra will be fully explicated in the next section.

3. Structure enumeration: By reversing our point of view, we find that
we have been using an FS-algebra for structure enumeration so far,
where Ans = FS, hl, sr etc. are the constructors HL, SR etc. The
function pp is the identity on lists of answers, and hence, has not been
explicit in our previous exposition.

5This includes auxiliary constructors that may have been introduced by width reduc-
tion.
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5.2 Abstract evaluators

An abstract (folding space) evaluator is a structure space recognizer written
in terms of an abstract FS-algebra. We abstract from the answer data
type, its constructors, and add the application of the abstract list evaluation
function pp. The latter necessitates the introduction of a new combinator
(...) (reminiscent of the dot at the end of each production in EBNF).

> (...) :: Parser b -> ([b] -> [b]) -> Parser b

> (...) q pp (i,j) = pp (q (i,j))

The abstract evaluator for Gfeasible is as follows:

> c_feasibles inp = axiom n p_struct where

> (_,n) = bounds inp

> tabulated = table n

> basepair = match inp

> p_struct = struct <<< p components ... pp

> components = tabulated

> ( p_empty |||

> p closedcomponents |||

> ul <<< p_singlestrand |||

> cons <<< p_singlestrand ~~~ p closedcomponents ... pp)

> p_singlestrand = ss <<< p_region ... pp

> closedcomponents = tabulated

> (cons <<< p closed ~~~ p components ... pp )

> closed = tabulated

> (((hairpin ||| stack |||iloop ||| multiloop)

> ‘with‘ basepair) ... pp)

> where hairpin = hl <<< p_base +~~ (p_region ‘with‘ minloopsize 3) ~~+ p_base

> stack = sr <<< p_base +~~ p closed ~~+ p_base

> iloop = sr <<< p_base +~~ p open ~~+ p_base

> multiloop = ml <<< p_base +~~ p ml_components ~~+ p_base

> open = tabulated

> (bulgeleft ||| bulgeright ||| p doublebulge ... pp)

> where bulgeleft = bl <<< p_region ~~~ p closed

> bulgeright = br <<< p closed ~~~ p_region

> doublebulge = tabulated

> (il <<< p_region ~~~ p closed ~~~ p_region)

> ml_components = tabulated

> (cons <<< p_singlestrand ~~~ p ml_closedcomponents |||

> p ml_closedcomponents ... pp)

> ml_closedcomponents = tabulated

> (cons <<< p closed ~~~ p ml_components1 ... pp)

> ml_components1 = tabulated

> (cons <<< p_singlestrand ~~~ p closedcomponents |||

> p closedcomponents ... pp )

> p_base = (anyChar inp) ... pp

The above is an abstract program – there is no indication about the answer
data type in these lines. A concrete FS-algebra has yet to be specified by
giving a meaning to hl, sr, etc.
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5.3 Instantiating an abstract evaluator

We continue the definition of c feasibles by instantiating it with the count-
ing FS-algebra. This includes four steps:

1. We fix the answer data type to Int.

2. The primitive parsers are redefined to yield results in the chosen answer
data type:

> anyChar inp (i,j) = if i+1 == j then [1] else [ ]

> p_empty (i,j) = if i == j then [1] else [ ]

> p_region (i,j) = if i < j then [1] else [ ]

3. The evaluation functions are defined to multiply counts of structure
constituents:

> ul x = x

> cons x y = x * y

> struct x = x

> ss x = x

> bl l x = l * x

> br x l = x * l

> hl b1 x b2 = b1 * x * b2

> sr b1 x b2 = b1 * x * b2

> il l x r = l * x * r

> ml b1 x b2 = b1 * x * b2

4. The list evaluation function pp is defined to sum over the counts in a
list, returning a unitary list rather than an integer to conform to the
overall scheme6. Function sum is list summation.

> pp = addup where addup [ ] = [ ]

> addup xs = [sum xs]

This completes the definition for the counting evaluator for Gfeasible. Com-
puting c feasibles x we obtain the number of feasible secondary structures
that an RNA sequence x can attain according to the given pairing rules. By
a modified definiiton of the axiom-clause we may also obtain counts for var-
ious types of substructures (hairpins, multiloops), or counts for different
regions of the input sequence.

5.4 Peephole optimization

For expository reasons, we have been very systematic in our development of
the counting evaluator, refraining from a number of obvious optimizations.

6Here is a pitfall to be avoided: The mathematically correct and simpler definition pp =

sum implies pp [ ] = [0]. This leads to an exponential number of zeroes that need to be
added and multiplied. While the result remains correct, this would break the polynomial
complexity of the counting evaluator.
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• In the counting FS-algebra, parsers like p base or p region always
yield [1] or [ ], such that the evaluation functions actually multi-
ply by 0 or by 1 much of their time. To avoid this, we might write
equivalently

hl b1 x b2 = x

since b1 and b2 are always equal to [1]. Alternatively, we may intro-
duce parser combinators -~~ and ~~- which simply drop the result(s)
of their left/right argument parser. They are known as xthen and
thenx combinators in Huttons work on string parsing [17]. This seems
more elegant, but also results in a more specific recognizer. Defining
a parser like stack in the form

stack = sr <<< p_base -~~ p closed ~~- p_base

sr x = x

means that instantiations of this abstract evaluator in any FS-algebra
will define a unary function sr, and will ignore the results of the parser
p base.

• Given that most evaluation function are instantiated in the same way,
two parsers may actually have equivalent definitions, and one of them
may be substituted by the other.

Such opportunities for optimization can be proved correct thanks to the high
level of abstraction of our specification.

6 Deriving Dynamic Programming Recurrencies

Down to earth! Finally, let us translate our evaluators, defined in terms of
higher order functions, into a set of (first order) dynamic programming re-
currencies, which can be implemented easily in an imperative programming
language like FORTRAN or C. This should yield a constant (but signifi-
cant) factor of speedup, compared to directly executing the specification as
a functional program in Haskell.

The derivation of dynamic programming recurrencies from a concrete FS-
evaluator proceeds as follows:

• Each tabulating parser q gives rise to a matrix Q with an index range
from (0, 0) to (n, n).

• The righthand side of its defining equation yields the defining recur-
rency for matrix elements Q!(i, j)

• Each non-tabulating parser turns into inline code.
• The functions of the FS-algebra, as well as the with-clauses in the

parsers are also inlined.
• The parser combinators are substituted by their definitions. The re-

sulting code is simplified, leading to one recurrency per tabulated
parser.
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• The axiom function turns into a print statement which outputs the
desired result.

• The function table yields the for-loop code for the initialization of
each matrix separately. All these for-loops must be joined, since the
recurrencies are mutually recursive.

The last item needs closer scrutiny. A functional specification inludes no
evaluation order aside from the data dependencies. As long as these de-
pendencies are not cirular, they can be evaluated in some order, and a lazy
programming language like Haskell will choose such an order. Once we
translate the dependencies into an eager (imperative) language, we must
explicitly organize the computation such that everything is calculated be-
fore it is used. It must be emphasized that our approach yields no general
technique for this problem.

In the given case, a suitable evaluation order not only exists, it is also easy to
find. For i ≤ j, all dependencies go from subword (i, j) to interior regions, so
we calculate all nontrivial matrix entries inside-out, starting from the main
diagonal.

This leads to the following loop code:

for j = 0 to n− 1
for i = j + 1 to n

for each M
M !(i, j) = 0

for j = 0 to n
for i = j to 0

for each M
M !(i, j) = << see specific recurrence for M>>

From this framing code, it follows that the assertion 0 ≤ i ≤ j ≤ n may be
used for simplification when deriving matrix recurrencies.

The grammar Gfeasible requires the following seven matrices: Components,
Closedcomponents, Closed, Open, Ml−components, Ml−closedcomponents,
Ml − components1. Their index range is i ∈ [0, n], j ∈ [0, n], and their ele-
ment type is Integer. We shall identify [x] with x and [ ] with 0.

First we derive the code to be inlined for some elementary parsers:

p base(i, j) = if i + 1 = j then 1 else 0
p region(i, j) = if i < j then 1 else 0

(p region ’with’ minloopsize 3)(i, j) = if j − i ≥ 3 then (if i < j then 1 else 0) else 0
= if j − i ≥ 3 then 1 else 0

p singlestrand(i, j) = if i < j then 1 else 0
p struct(i, j) = Components!(i, j)

The above equations define expressions to be substituted for the non-tabulating
parsers. We now derive the recurrencies for the matrix Closed. First, we
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derive and simplify code for its auxiliary parsers hairpin, stack, iloop,
and multiloop.

hairpin!(i, j) = (hl<<<p base+~~p region ‘with‘ minloopsize 3 ~~+p base)(i, j)
= p base(i, i + 1) ∗ (if (j − 1)− (i + 1) ≥ 3 then 1 else 0)

∗ p base(j − 1, j)
= 1 ∗ (if j − i ≥ 5 then 1 else 0) ∗ 1
= if j − i ≥ 5 then 1 else 0

stack!(i, j) = p base(i, i + 1) ∗ Closed!(i + 1, j − 1) ∗ p base(j − 1, j)
= Closed!(i + 1, j − 1)

iloop!(i, j) = p base(i, i + 1) ∗Open!(i + 1, j − 1) ∗ p base(j − 1, j)
= Open!(i + 1, j − 1)

multiloop!(i, j) = p base(i, i + 1) ∗Ml components!(i + 1, j − 1) ∗ p base(j − 1, j)
= Ml components!(i + 1, j − 1)

Finally, we obtain the overall recurrence for matrix Closed:

Closed!(i, j) = if pair(inp!i + 1, inp!j) then
addup[ hairpin(i, j), stack(i, j), iloop(i, j), multiloop(i, j)]
else 0

which simplifies to

Closed!(i, j) = 0, if not pair(inp!(i + 1), inp!j)
= if j − i ≥ 5 then 1 else 0

+ Closed!(i + 1, j − 1) + Open!(i + 1, j − 1)
+ Ml components!(i + 1, j − 1), otherwise

It is easy to prove that Closed!(i, i) = 0 for all i, which is useful in the
further derivations.

For the other six matrices, we derive the following recurrencies:
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Components!(i, j) = 1 +
j∑

k=i

Closedcomponents!(k, j)

Closedcomponents!(i, j) =
j∑

k=i+1

Closed!(i, k) ∗ Components!(k, j)

Open!(i, j) =
j−1∑

k=i+1

Closed!(k, j) +
j−1∑

k=i+1

Closed!(i, k)

+
j−1∑

k=i+2

k−1∑

k′=i+1

Closed!(k′, k)

Ml components!(i, j) =
j∑

k=i

Ml closedcomponents!(k, j)

Ml closedcomponents!(i, j) =
j∑

k=i+1

Closed!(i, k) ∗Ml components1!(k, j)

Ml components1!(i, j) =
j∑

k=i

Closedcomponents!(k, j)

The overall result is given by

count feasibles inp = print p struct(0,n)
= print Components!(0,n)

There is still one fly in the ointment – the equation defining matrix Open
contains a quadratic term arising from doublebulge. This renders the time
complexity O(n4) for the overall computation. Section 3.4 provides a tech-
nique to avoid this. We apply a width reduction transformation to the tree
grammar production for doublebulge. The original definition

doublebulge = tabulated (il <<< p_region ~~~ p closed ~~~ p_region)

is rewritten by means of an auxiliary tabulating parser p illeft, and an
extension of the counting algebra by functions combine and il’.

doublebulge = tabulated ( il’ <<< p illeft ~~~ p_region) where

illeft = tabulated ( combine <<< p_region ~~~ p closed)

combine x y = x * y

il’ x z = x * z

Thus, we have added an additional parser table illeft and thereby reduced
the width of the overall grammar to 2. Correspondingly, another matrix
Illeft needs to be calculated, yielding the improved recurrencies.
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Doublebulge!(i, j) =
j−1∑

k=i+1

Illeft!(i, k)

Illeft!(i, j) =
j−1∑

k=i+1

Closed!(k, j)

It is clear that the analysis in Section 3.4 still applies, but the efficiency of
the imperative version of the counting evaluator can also be read directly
from the recurrencies and the shape of the matrices. Alike its functional
counterpart, it executes in O(t ∗ n2) space and O(t ∗ n3) time, where t = 8.

7 Applications

In this section, we will develop dynamic programming solutions for several
problems in the area of RNA folding. We hope to demonstrate to the reader
that with the technique introduced in the previous sections, we may find
such solutions in a systematic way, and as a matter of hours. We claim that
– unless we are extraordinarily gifted mathematicians and programmers –
such solutions otherwise take days to develop and weeks to debug.

We shall consider three applications of our programming method:

1. We take a look at the Waterman estimate of all feasible structures of
an RNA sequence of length n. This problem is a simplification of what
we have seen so far.

2. We will then proceed to grammars more sophisticated than Gfeasible,
which describe more specific (and hence much smaller) languages of
structures.

3. We finally show how a motif search program can be constructed with
our method.

7.1 Variations of the Waterman estimate

A well-known upper estimate for the number of feasible foldings of an RNA
molecule of n residues was proposed and analysed by Waterman and Smith
[34, 35]. The Waterman estimate assumes a minimal loop size of 1, and more
importantly, abstracts from the concrete primary sequence and the rules of
base pairing, assuming that arbitrary two bases can form a base pair. Thus,
the Waterman estimate is a function of n only, lending itself to a deeper
mathematical analysis [35].
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A simple grammar to derive the Waterman recurrencies Our ana-
logue of the Waterman approach is a tree grammar that does not care about
base pairing and minimal loop sizes. By slight abuse of our earlier inter-
pretation, we use the constructor BR for anything composed from two sub-
structures. Atomic structures are either a single base, or three adjacent
bases forming a minimal hairpin. Larger structures arise by either adding
an unpaired base to a smaller one, or a base that pairs with a partner base
somewhere inside the smaller structure. This is reflected in the simple gram-
mar given in Figure 4. The resulting abstract evaluator, instantiated by the
counting algebra, is easily obtained by our method.

> waterman_estimate inp = axiom n (p structs) where

> axiom n q = q (0,n)

> (_,n) = bounds inp

> tabulated = table n

> (~~~) = (~~) (1,n-1) (1,n-1)

> structs = tabulated (

> p_base |||

> br <<< p structs ~~+ p_base |||

> p_closed |||

> br <<< p structs ~~~ p_closed ... pp)

> p_closed = (sr <<< p_base +~~

> (p structs‘with‘ minloopsize 1) ~~+

> p_base) ... pp

> p_base = anyChar inp

> anyChar _ (i,j) = if i+1 == j then [1] else [ ]

> sr x y z = x*y*z

> br x y = x*y

> pp [ ] = [ ]

> pp xs = [sum xs]
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Since the grammar is left (and right) recursive, the ~~~-combinator has been
slightly redefined, using our ~~-combinator for bounded yields, as introduced
in Section 3.5. Here it requires that each of its argument parsers recognizes
at least one symbol. Note that the parsers never inspect the input, except
to determine its length n. This property results from the way we define
anyChar, and is inherited by all other parsers. Hence, the counting evaluator
implemented by this grammar is a function of n only.7

Applying our deriviation technique of Section 6, we obtain the following
recurrencies:

closed(i, j) = if j − i < 3 then 0
else Structs!(i + 1, j − 1)

Structs!(i, j) = (if i + 1 = j then 1 else 0)+
(if i < j then Structs!(i, j − 1) + p base(j − 1, j) else 0)+
closed (i, j)+∑j−1

k=i+1 Structs!(i, k) ∗ closed(k, j)
We substitute for closed, use closed(j−1, j) = 0, and sort out the starting
cases:

Structs!(i, i) = 0
Structs!(i, i + 1) = 1

Structs!(i, j) = Structs!(i, j − 1) + Structs!(i + 1, j − 1) +
j−2∑

k=i+1

Structs!(i, k) ∗ Structs!(k + 1, j − 1) for j ≥ i + 2

By induction on j− i, we observe that Structs!(i, j) = Structs!(i+x, j +x)
for any x ≥ 0. Thus we may adjust the latter equation to

Structs!(i, j) = Structs!(i, j − 1) + Structs!(i, j − 2) +

=
j−2∑

k=i+1

Structs!(i, k) ∗ Structs!(i, i + j − k − 2)

Being interested only in Structs!(0, n), we set S(m) = Structs!(0, n) and
obtain

S(0) = 0
S(1) = 1

S(m + 1) = S(m) + S(m− 1) +
m−1∑

k=1

S(k) ∗ S(m− k − 1)

This is Waterman’s estimate as presented in [34].
7This can be verified by a simple exercise: Calculate waterman estimate for an input

string of n characters, all of which are undefined.
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The Waterman estimate lends itself to mathematical analysis, and explicates
the general exponential growth pattern of the number of feasible structures
depending on the sequence length. It is not a tight upper bound, however,
under the usual set of base pairing rules. For a sequence x of length 3, it
accounts for structures "...", "().", ".()", and "(.)", where paired bases
are indicated by parentheses. There is no sequence "xyz" which can achieve
the latter three of these. This would require base pairings x-y, y-z as well
as x-z, which is impossible. Thus, the Waterman estimate accounts for cer-
tain impossible structures, and their number shares the general exponential
pattern of growth of the overall formula.

There are two ways to go from here: We can make probabilistic assumptions
on base pair matching, obtaining a probabilistic version of the Waterman
estimate. We may also add syntactic restrictions to the grammar, to be
satisfied by a given sequence, obtaining the count of substructures for a
concrete sequence – a formula also given in [37].

A more realistic estimate Given the base composition of a sequence x
and set of base pairing rules, it is simple to determine the probability that
two independently chosen residues xi and xj can form a base pair. The
contribution of the rule for nonterminal closed is now weighted with this
probability. We also return to a minimal loopsize of 3.

> prob_waterman_estimate basecomp inp = axiom n (p structs) where

> axiom n q = q (0,n)

> (_,n) = bounds inp

> tabulated = table n

> (~~~) = (~~) (1,n-1) (1,n-1)

> structs = tabulated

> (p_base |||

> br <<< p structs ~~+ p_base |||

> p_closed |||

> br <<< p structs ~~~ p_closed ... pp)

> p_closed = (sr <<< p_base +~~

> (p structs‘with‘ minloopsize 3) ~~+

> p_base) ... pp

> p_base = anyChar inp

> anyChar _ (i,j)= if i+1 == j then [1] else [ ]

> sr x y z = x*y*z* (pair_probability basecomp)

> br x y = x*y

> pp [ ] = [ ]

> pp xs = [sum xs]

As a minor contrast to the treatment in [14], our formula takes into ac-
count the base composition for the calculation of base pair probabilities.
See Section 7.4 for comparing some results from these estimates.
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Counting, revisited In [35] Waterman and Smith give a formula for
Nk

i,j(x), the number of structures formed by exactly k base pairs for subword
(i, j) of a given RNA sequence x. Summing up Nk

0,n(x) over all k, one
obtains a count of all feasible structures of the complete sequence x. Zuker
and Sankoff [37] and also Hofacker et al. [14] derive their formula directly
from the Waterman estimate, as we shall do here.

We obtain a concrete counting formula from the Waterman estimate by
including in its grammar checks for minimal loop size and base pairing. All
the rest is familiar from Gfeasible.

> waterman_count inp = axiom n (p structs) where

> axiom n q = q (0,n)

> (_,n) = bounds inp

> tabulated = table n

> basepair = match inp

> (~~~) = (~~) (1,n-1) (1,n-1)

> structs = tabulated (

> p_base |||

> br <<< p structs ~~+ p_base |||

> p_closed |||

> br <<< p structs ~~~ p_closed ... pp)

> p_closed = (sr <<< p_base +~~

> (p structs‘with‘ minloopsize 3) ~~+

> p_base) ‘with‘ basepair ... pp

> p_base = anyChar inp

> anyChar _ (i,j)= if i+1 == j then [1] else [ ]

> sr x y z = x*y*z

> br x y = x*y

> bl x y = x*y

> pp [ ] = [ ]

> pp xs = [sum xs]

Of course, for an arbitrary RNA sequence x, the equation waterman count x
= count feasibles x holds, and the two programs can be used to validate
each other. Both run with the same time efficiency, but count feasibles
uses a few more tables. One virtue of count feasibles is that it allows
to report counts also for specific substructures (e.g. multiloops), which are
not distinguished from other closed substructures by waterman count. The
other virtue of Gfeasible is that it allows to direct our attention to more
specific (and hence smaller) sets of structures. This is what we built upon
in the next section, when we consider canonical and saturated structures.

Waterman and Smith’s analysis [35] has been considerably extended by Ho-
facker et al. [14], where a large number of recurrencies is developed and
analysed. Their analysis starts from the Waterman estimate, and gives re-
currencies for numbers of stacks, loops, external bases, and so on. In our
terminology, all these formulas use simplistic grammars like the one of the
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Waterman estimate as their recognizers. Recasting this work in terms of
an FS-algebra, together with the grammars introduced in the next section,
would give us Hofacker’s recursions for canonical and saturated structures
– for free.

7.2 Canonical and saturated structures

Canonical structures Tree grammars provide a simple and quite conve-
nient formalism for fine-tuning a tree language describing RNA structures.
We demonstrate this first by defining a more restrictive language of canon-
ical structures. Let us say that a structure is canonical if it has no isolated
base pair. In other words, we impose the rule that base pairs must enjoy
stacking, otherwise they will not form. This is motivated by free energy
considerations.

Refining grammar Gfeasible into Gcanonical, we split nonterminal closed into
two variants: stack derives structures which are (strongly) closed by at
least two stacked base pairs, while closed derives those structures which
are (weakly) closed by a single base pair. Weakly closed structures may now
only exist inside strongly closed ones, but must not occur as components in
a multiloop.

The productions of grammar Gcanonical are given in Figure 3. This is the
folding space enumerator for the canonical structures:
> canonicals inp = axiom n p_struct where

> (_,n) = bounds inp

> tabulated = table n

> basepair = match inp

> p_struct = STRUCT <<< p components

> components = tabulated

> ( p_empty |||

> p closedcomponents |||

> (:[ ])<<< p_singlestrand |||

> (:) <<< p_singlestrand ~~~ p closedcomponents)

> p_singlestrand = SS <<< p_region

> closedcomponents = tabulated

> ((:) <<< p stack ~~~ p components)

> stack = tabulated

> ((SR <<< p_base +~~ ( p stack ||| p closed) ~~+ p_base

> ) ‘with‘ basepair)

> closed = tabulated

> ( (hairpin ||| iloop ||| multiloop)

> ‘with‘ basepair)

> where hairpin = HL <<< p_base +~~ (p_region ‘with‘ minloopsize 3) ~~+ p_base

> iloop = SR <<< p_base +~~ p open ~~+ p_base

> multiloop = ML <<< p_base +~~ p ml_components ~~+ p_base

> open = tabulated

> (bulgeleft ||| bulgeright ||| doublebulge)

> where bulgeleft = BL <<< p_region ~~~ (p closed ||| p stack)
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Figure 5: Productions of grammar Gcanonical
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> bulgeright = BR <<< (p closed ||| p stack) ~~~ p_region

> doublebulge = IL <<< p_region ~~~ (p closed ||| p stack) ~~~ p_region

> ml_components = tabulated

> ( (:) <<< p_singlestrand ~~~ p ml_closedcomponents |||

> p ml_closedcomponents)

> ml_closedcomponents = tabulated

> ( (:) <<< p stack ~~~ p ml_components1)

> ml_components1 = tabulated

> ( (:) <<< p_singlestrand ~~~ p closedcomponents |||

> p closedcomponents)

> p_base = anyChar inp

The abstract evaluator for canonical structures, and its instantiation with
the counting FS-algebra, is obtained in the same manner as with feasible
structures.

Saturated structures We call a canonical RNA structure saturated, when
all stacks maximally extend in either direction. This is a much stronger re-
striction than canonicity, but less frequently applicable. Still, we hope it
significantly reduces further the number of structures under consideration.

A first approach at an enumerator of saturated structures works as follows:
To check the maximality condition, this parser introduces two private com-
binators: suchthat filters the results of a parser, while within checks a
condition on the context around a given subword.

We directly specify the enumerator for saturated structures.

> saturated inp = axiom n p_struct where

> suchthat r f (i,j) = [x |x<-r (i,j),f x]

> (_,n) = bounds inp

> tabulated = table n

> basepair = match inp

> nobasepair (i,j) = j - i < 3 || not (basepair (i,j))

> within r f (i,j) = [x | 0 == i || j == n || f (i-1,j+1), x <- r (i,j)]

> p_struct = STRUCT <<< p components

> components = tabulated

> ( p_empty |||

> p closedcomponents |||

> (:[ ]) <<< p_singlestrand |||

> ((:) <<< p_singlestrand ~~~ p closedcomponents)

> ‘suchthat‘ maximize )

> p_singlestrand = SS <<< p_region

> closedcomponents = tabulated

> ((:) <<< p stack ~~~ p components)

> stack = tabulated

> ((SR <<< p_base +~~ ( p stack ||| p closed) ~~+ p_base)

> ‘with‘ basepair)

> closed = tabulated

> ( (hairpin |||iloop ||| multiloop)
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> ‘with‘ basepair)

> where hairpin = HL <<< p_base +~~ ((p_region ‘with‘ minloopsize 3)

> ‘with‘ nobasepair) ~~+ p_base

> iloop = SR <<< p_base +~~ p open ~~+ p_base

> multiloop = ML <<< p_base +~~ p ml_components ~~+ p_base

> open = tabulated

> (bulgeleft ||| bulgeright ||| doublebulge)

> where bulgeleft = BL <<< p_region ~~~ (p closed ||| p stack)

> bulgeright = BR <<< (p closed ||| p stack) ~~~ p_region

> doublebulge = (IL <<< p_region

> ~~~ (p closed ||| p stack)‘within‘ nobasepair

> ~~~ p_region) ‘with‘ nobasepair

> ml_components = tabulated

> ( ((:) <<< p_singlestrand ~~~ p ml_closedcomponents)

> ‘suchthat‘ maximize |||

> p ml_closedcomponents)

> ml_closedcomponents = tabulated

> ( (:) <<< p stack ~~~ p ml_components1)

> ml_components1 = tabulated

> ( ((:) <<< p_singlestrand ~~~ p closedcomponents)

> ‘suchthat‘ maximize |||

> p closedcomponents)

> p_base = anyChar inp

> maximize (SS (i,j): c: SS (i’,j’):es) = not (pair (inp!j,inp!(i’+1)))

> maximize es = True

While this enumerator looks very similar to the previous one, there is an
important difference: The private combinator suchthat applies a predicate
to a result structure. It is used to check maximality of a stacking region
only where embedded between two single strands. This presents a problem
when instantiating the abstract evaluator in the counting FS-algebra. What
should be the argument type of the predicate maximize? In fact - the
grammar needs to be rewritten to alleviate this situation (and this is the
challenge of this example).

The task is to encode in the grammar the pattern matching on result struc-
tures, that is done by the above definition of maximize. Productions for
component lists must be refined such that there is a distinguished point
where a closed component is embedded between two single strands. In this
context, a structure is rejected if the stacking region of the closed com-
ponents can be extended by base pairing into the adjacent single strands.
Note that at least one structure which has this (and possibly further) stack
extension remains in the set of recognized structures.

Component lists of the overall structure will now be generated by two non-
terminals, ucomp and rcomp. rcomp generates component lists in the left
context of a single strand; the others are generated by ucomp. Two further
nonterminals sr and cu arise from a width reduction transformation.

Structural components of a multiloop are handled in the same way, with
the traditional restriction that a multiloop must contain at least two stack-
ing regions. Multiloop elements are now derived by nonterminal ml comps,
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which has a very complex righthand side. With width reduction, this leads
to 15 nonterminals, for which a specific mnemonic is introduced below.

> saturated’ inp = axiom n p_struct where

> (_,n) = bounds inp

> tabulated = table n

> basepair = match inp

> nobasepair (i,j) = j - i < 3 || not (basepair (i,j))

> within r f (i,j) = [x | 0 == i || j == n || f (i-1,j+1), x <- r (i,j)]

> p_struct = STRUCT <<< p components

> components = ucomps

> ucomps = tabulated

> ( p_empty |||

> (:) <<< p stack ~~~ p ucomps |||

> (:) <<< p_singlestrand ~~~ p rcomps )

> rcomps = tabulated

> ( p_empty |||

> (:[ ])<<<(p stack) |||

> (:) <<< (p stack ‘within‘ nobasepair) ~~~ p sr |||

> (:) <<< p stack ~~~ p cu )

> sr = tabulated

> ((:) <<< p_singlestrand ~~~ p rcomps)

> cu = tabulated

> ((:) <<< p stack ~~~ p ucomps)

> p_singlestrand = SS <<< p_region

> stack = tabulated

> ((SR <<< p_base +~~ ( p stack ||| p closed) ~~+ p_base)

> ‘with‘ basepair)

> closed = tabulated

> ((hairpin |||iloop ||| multiloop) ‘with‘ basepair) where

> hairpin = HL <<< p_base +~~ ((p_region ‘with‘ minloopsize 3)

> ‘with‘ nobasepair) ~~+ p_base

> iloop = SR <<< p_base +~~ p open ~~+ p_base

> multiloop = ML <<< p_base +~~ p_ml_comps ~~+ p_base

> open = tabulated

> (bulgeleft ||| bulgeright ||| doublebulge) where

> bulgeleft = BL <<< p_region ~~~ (p closed ||| p stack)

> bulgeright = BR <<< (p closed ||| p stack) ~~~ p_region

> doublebulge = (IL <<< p_region

> ~~~ (p closed ||| p stack) ‘within‘ nobasepair

> ~~~ p_region) ‘with‘ nobasepair

> p_ml_comps = p sccu ||| p ccu |||

> p csmsr ||| p csccu ||| p csc |||

> p smsmsr ||| p smsccu ||| p smsc

Mnemonic used: s = singlestrand,

c = stack,

m = stack with maximality restriction

r = rcomps

u = ucomps

> p_m = p stack ‘within‘ nobasepair

> ccu = tabulated ( (:) <<< p stack ~~~ p cu )

> sccu = tabulated ( (:) <<< p_singlestrand ~~~ p ccu )

> csc = tabulated ( (:) <<< p stack ~~~ p sc )

> sc = tabulated ( (:) <<< p_singlestrand ~~~ ((:[ ]) <<< p stack) )
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> csccu = tabulated ( (:) <<< p stack ~~~ p sccu )

> csmsr = tabulated ( (:) <<< p stack ~~~ p smsr )

> smsr = tabulated ( (:) <<< p_singlestrand ~~~ p msr )

> msr = tabulated ( (:) <<< p_m ~~~ p sr )

> smsc = tabulated ( (:) <<< p_singlestrand ~~~ p msc )

> msc = tabulated ( (:) <<< p_m ~~~ p sc )

> smsccu = tabulated ( (:) <<< p_singlestrand ~~~ p msccu )

> msccu = tabulated ( (:) <<< p_m ~~~ p sccu )

> smsmsr = tabulated ( (:) <<< p_singlestrand ~~~ p msmsr )

> msmsr = tabulated ( (:) <<< p_m ~~~ p smsr )

> p_base = anyChar inp

The grammar has grown considerably more complex. Our reward is that
we eliminated the use of the suchthat-combinator. Now structures are
constructed as they are recognized, but never inspected a posteriori. We
may now obtain the abstract evaluator and instantiate it by the counting
FS-algebra. This works as before, so it is not shown here.

Even with saturated structures, the number of structures that are possible
for a given RNA of length n remains exponential in n. So we rarely want to
see the complete list of all answers of a call to saturated. See Section 7.4
for some concrete data. The enumerator saturated has been used to create
some RNA-movies [7], visualizing the complete (saturated) folding space of
a very short RNA.

7.3 Recognition of structural motifs

In the previous examples, we have defined tree grammars that describe es-
sentially all possible structures, subject to slightly different restrictions. Just
as well, we may design a grammar to recognize just one motif (a particular
substructure), or a set of such motifs. This may be a single hairpin of a
certain size, a group of neighbouring hairpins, or a very complex structure.
We may write the grammar to allow a certain amount of variation. All
those points of variation will vary independently – this means, that with
the grammar-based approach, we cannot implement the equivalent of an
edit-distance like notion of similarity.

Our model case will be the cloverleaf motif, as it occurs with transfer RNA.
We start from the folding space enumerator for saturated structures (first
version), and modify it in several respects:

1. We only recognize cloverleaves, in arbitrary positions in the overall
sequence, embedded between (possibly empty) single strands. This
affects the production for the new nonterminal symbol clovers, and
adds a new nonterminal symbol outerss for singlestrands which may
be empty.

2. Cloverleaves are multiloops with k stacking regions branching from
them, where k ≥ 3 is a parameter. The number of branches of a mul-
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tiloop m is checked by the predicate arms k m. This check is included
in the production for clovers via the suchthat-combinator.

3. We disallow further multiloops inside the arms of the cloverleaf. Hence,
nonterminal multiloop is deleted from the righthand side of the pro-
duction for nonterminal closed.

4. To avoid uninteresting structures, let us impose an upper bound s on
the length of bulges and hairpin loops, where s ≥ 3 is a parameter.
This leads to a new nonterminal rregion for size-restricted regions.

With these decisions in mind, it is straightforward to write down an enu-
merator for saturated cloverleaf structures.

> sat_cloverleaves k s inp = axiom n p_struct where

> (_,n) = bounds inp

> tabulated = table n

> basepair = match inp

> nobasepair (i,j) = j - i < 3 || not (basepair (i,j))

> within r f (i,j) = [x | 0 == i || j == n || f (i-1,j+1), x <- r (i,j)]

> suchthat r f (i,j) = [x |x<-r (i,j),f x]

> p_struct = STRUCT <<< p_clovers

> p_clovers = list <<< p_outerss ~~~

> (p_multiloop ‘within‘ nobasepair)

> ‘suchthat‘ arms k ~~~

> p_outerss where

> list x y z = [x,y,z]

> components = tabulated

> ( p_empty |||

> p closedcomponents |||

> (:[ ]) <<< p_singlestrand |||

> ((:) <<< p_singlestrand ~~~ p closedcomponents)

> ‘suchthat‘ maximize )

> p_rregion = p_region ‘with‘ maxsize s

> p_outerss (i,j) = [SS (i,j)|i <= j]

> p_singlestrand = SS <<< p_region

> closedcomponents = tabulated

> ((:) <<< p stack ~~~ p components)

> stack = tabulated

> ((SR <<< p_base +~~ ( p stack ||| p closed) ~~+ p_base

> ) ‘with‘ basepair)

> closed = tabulated

> ( (hairpin |||iloop) ‘with‘ basepair)

> where hairpin = HL <<< p_base +~~ ((p_rregion ‘with‘ minloopsize 3)

> ‘with‘ nobasepair) ~~+ p_base

> iloop = SR <<< p_base +~~ p open ~~+ p_base

> p_multiloop = (SR <<< p_base +~~

> ((ML <<< p_base +~~ p ml_components ~~+ p_base)

> ‘with‘ basepair ) ~~+

> p_base) ‘with‘ basepair

> open = tabulated

> (bulgeleft ||| bulgeright ||| doublebulge)

> where bulgeleft = BL <<< p_rregion ~~~ (p closed ||| p stack)
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> bulgeright = BR <<< (p closed ||| p stack) ~~~ p_rregion

> doublebulge = (IL <<< p_rregion

> ~~~ (p closed ||| p stack)‘within‘ nobasepair

> ~~~ p_rregion) ‘with‘ nobasepair

> ml_components = tabulated

> ( ((:) <<< p_singlestrand ~~~ p ml_closedcomponents)

> ‘suchthat‘ maximize |||

> p ml_closedcomponents)

> ml_closedcomponents = tabulated

> ( (:) <<< p stack ~~~ p ml_components1)

> ml_components1 = tabulated

> ( ((:) <<< p_singlestrand ~~~ p closedcomponents)

> ‘suchthat‘ maximize |||

> p closedcomponents)

> p_base = anyChar inp

> maximize (SS (i,j): c: SS (i’,j’):es) = not (pair (inp!j,inp!(i’+1)))

> maximize es = True

> maxsize s (i,j) = j-i <= s

> arms k (SR a s b) = arms k s

> arms k (ML a cs b) = arms cs k where

> arms [ ] n = (n==0)

> arms (SS x : ys) n = arms ys n

> arms (SR a x b : ys) n = arms ys (n-1)

For expository reasons, this is not the most efficient version of the clover-
leaf enumerator. Width reduction should be applied to the productions
for nonterminals clovers and doublebulge in order to achieve the usual
asymptotic runtime of O(n3) also for the recognition of cloverleaves.

7.4 Examples from Applications

This paper is devoted to programming methodology. Applications that have
been done using our approach will be reported elsewhere. However, some
data shall be included here, to illustrate the outcome of the analyses devel-
oped in earlier sections.

The stepwise growth of the structure counts in Figure 6 is remarkable, and
good correspondence of the probabilistic estimate with the number of feasi-
ble structures is not self-understood. These phenomena need to be investi-
gated further.

It is interesting to see where the variation among the saturated structures
lies. As it is most cumbersome to scan through a large number of related
structures by individual inspection, the tool RNA-Movies has been devel-
oped [7]. Among other forms of usage, it allows to visualize the folding
space of a given RNA in the form of an animated structure drawing, creat-
ing the impression of a molecule exploring its own folding space. The folding
space enumerators developed in this article have been used to create several
such movie scripts, which will be included in the software distribution of
RNA-Movies.
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length Waterman feasible canon. satur. probabilistic
estimate structs structs structs estimate

1 1 1 1 1 1.0
2 1 1 1 1 1.0
3 2 1 1 1 1.0
4 4 1 1 1 1.0
5 8 1 1 1 1.16
6 17 3 1 1 1.83333
7 37 3 1 1 2.52936
8 82 5 1 1 3.42676
9 185 7 1 1 4.55595

10 423 9 1 1 5.98722
11 978 10 1 1 7.80433
12 2283 13 1 1 10.1062
13 5373 23 1 1 19.931
14 12735 50 4 4 47.1037
15 30372 106 11 6 100.822
16 72832 117 11 6 139.23
17 175502 141 11 6 191.08
18 424748 166 11 6 260.745
19 1032004 192 11 6 353.922
20 2516347 390 11 6 510.607
21 6155441 1195 12 7 1189.46
22 15101701 2080 125 68 1685.49
23 37150472 3802 130 71 3651.9
24 91618049 7743 377 215 7569.13
25 226460893 16343 886 493 15160.5
26 560954047 18417 886 493 20991.9
27 1392251012 57708 2067 903 47999.3
28 - out - 100026 8809 3554 74371.5
29 - of - 157473 8963 3559 114574.0
30 - integer - 235025 9249 3639 175550.0
31 - range - 392769 9405 3661 373024.0
32 - - - 959584 24756 8711 797314.0
33 - - - 1571253 63033 14666 1.23524e+06
34 - - - 2316077 64958 14946 1.90449e+06
35 - - - 3964084 66341 15069 4.1482e+06
36 - - - 6258425 66341 15069 6.5104e+06
37 - - - 12414737 70721 16406 1.32957e+07
38 - - - 18828142 281723 66001 2.06058e+07
39 - - - 36275414 293556 68088 4.10018e+07
40 - - - 55611266 682743 158433 6.28615e+07

Figure 6: Structure counts for initial segments of an RNA se-
quence from neurospora crassi, "gaccauacccacuggaaaacucggg-
aucccguccgcucuccca...".

43



8 Conclusions and Future Work

Let us summarize what has been achieved, and then, look at the conse-
quences of this work.

Development of dynamic programming algorithms We have shown
that DP algorithms can be derived systematically by introducing a sepa-
ration between a structure recognition and a structure evaluation phase.
This general idea certainly applies to many, if not all problems traditionally
tackled by dynamic programming. Pairwise alignment under various cost
functions [34] is a simple case in point (mostly an pedagogical exercise), a
more challenging one is RNA structure comparison based on the tree edit
distance following [31].

In the problem domain of RNA folding, regular tree grammars for structure
description, tabulating yield parsers for structure recognition, and folding
space evaluation algebras for structure evaluation allow a complex analy-
sis problem to be solved in a completely declarative fashion. The virtues of
declarative programming are well known – better understanding due to high
level of abstraction, fast development, and high reliability8 even including
techniques for formal validation of desired properties. The recurrencies ulti-
mately derived can be formally cross-checked equation by equation, and the
resulting C program may be checked against the functional program directly
executing the specification.

Programming economy The conceptual separation of recognition and
evaluation phases leads to a modular approach to algorithm development.
A particular tree grammar can be combined with different FS-algebras, and
vice versa. From g+l specification components (g grammars and l algebras),
we can derive g ∗ l analyses.

Exploring RNA secondary structure This paper concentrating on the
aspects of program development, we have not reported about specific anal-
yses of RNA folding spaces. Our counting evaluators can certainly be used
to collect statistics about frequency of substructures, and it is interesting to
see how the numbers diverge for feasible, canonical, saturated, and maybe
even more restricted classes of structures. Note that all kinds of statistics
about substructures can be extracted from the recognizer by a straightfor-
ward change of the meaning of the axiom-clause.

8Practitioners of dynamic programming will have noticed with relief that our approach
avoids subscript errors by avoiding subscripts. Subscript errors are always a nuisance, but
a particular problem in DP approaches. They may result in occasional suboptimal results
that are unlikely ever to be noticed. In algorithm development with our method, all the
control structure is taken care of by the tree parser combinators. Only in the final phase
when the dynamic prgramming recurrencies are derived by hand, subscript errors may
sneek in. This calls for automating the procedure.
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Efficiency Our formal method involves no trade-off in terms of ultimate
program efficiency. On the contrary, the systematic use of the width reduc-
tion transformation on tree grammars garantees cubic complexity in cases
where without such guidance, such efficiency might be difficult to achieve.

From formal method to automation? Could we fully automate the
derivation of the imperative program from the declarative specification?
Certainly to a large extend, if only a straightforward implementation is
desired. But note that the derivation sometimes involves the application
of partial program evaluation or of mathematical laws (about summation,
minimization, or laws holding for the specific FS-algebra). So, a fully au-
tomatic tool producing good code for the loop bodies would not be trivial.
Also, automation would certainly restrict the flexibility of the approach,
which must be seen as one of its major virtues.

And there is also a more fundamental obstacle to complete automation. The
functional specification indicates no particular evaluation order for the ma-
trix elements. In general, a recognizer may not even terminate. Our matrix
recurrencies embedded in for-loops, on the other hand, always terminate.
Thus, a general method to determine evaluation order would implicitly solve
the Halting Problem. It will always require some human ingenuity and the-
orem proving to find an evaluation order for the imperative implementation.

Extensions of the method Our method can be extended in several ways;
we only list a few:
Annotated nonterminals sometimes allow to write smaller grammars. This
leads to combinators that handle parsers with extra arguments, and to three
dimensional tables in the DP recurrencies. The size in the extra dimension
corresponds to the value range of the annotation.

Yield parsers with extra arguments, say a table with data from mapping
experiments, may focus the analysis towards structures compatible with
positional constraints on base pairing. This extension fairly simple, since it
is quite independent of the rest of our approach.

Heterogenous fs-algebras arise naturally when different matrices store differ-
ent types of information. There will be various instances of the list evalua-
tion function pp (most generally, one for each production of the tree gram-
mar), but else, nothing changes.

Cross-products of fs-algebras allow two combine two analyses with a single
recognition phase. This becomes intricate (only) if the results of the two
analyses mutually depend on one another.

Future work Partly with the approach as presented, partly using the
extensions sketched above, the following problems should be studied:
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Collect statistics about frequencies of substructures. Can they be used for
a functional classification of an unknown RNA sequence?

Incorporate experimental data to give an account of (the number of) suc-
cinctly different structures compatible with these data.

For a given set of structural motifs (hammerhead, cloverleaf, prominent
hairpins) find the energetically best instance of this motiv in the folding
space of a given RNA.

Folding away from a given motif means to find the energetically best struc-
ture that does not exhibit this motif. This relies on the closure properties
of regular tree languages under complement (cf. Section 2.4) and may lead
to a large grammar, but seems straightforward otherwise.

A more intelligent way to sample the folding space of a given RNA would
greatly enhance the efficiency of the paRNAss [11] tool for the prediction of
conformational switches.

Pseudoknots are very important in catalytic RNA, and it is an obstacle
to the use of folding programs that pseudoknots cannot be detected due to
computational complexity reasons. A DP approach (of complexity O(n6)) is
currently developed by Rivas and Eddy [24]. Their approach yields the most
complex DP recurrencies this author has encountered in bioinformatics. It
remains a challenge to find out if our approach can contribute to solving the
pseudoknot problem.

Acknowledgement Michael Zuker encouraged me to seek ways to for-
mulate more specific folding space analyses. Gerhard Steger gave advice on
the differences between alternative RNA secondary structures that actually
matter from the biological point of view. Stefan Kurtz provided numerous
valuable hints on the algorithmics, helping to simplify the presentation of
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work I owe to Gene Myers, who asked me to write down just one more set
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