
Master Thesis

Integrating Pareto Optimization
into the Dynamic Programming

Framework Bellman’s GAP

Thomas Gatter

Informatics in the Natural Sciences

(Matr. No.: 2172346)

November 10, 2015

Research Group Practical Computer Science
Technical Faculty
Bielefeld University

Supervisors: Dr. Cédric Saule
Prof. Dr. Robert Giegerich

2

Abstract

Pareto optimization allows to combine independent objectives by computing
the Pareto front of the search space, yielding a set of optima where none scores
better on all objectives than any other. Recently, it could be shown that Pareto
optimization seamlessly integrates with algebraic dynamic programming, sug-
gesting the operation of a “Pareto product algebra“.

In this thesis, such a product was implemented in the dynamic programming
framework Bellman’s GAP, allowing the programmer to obtain Pareto opti-
mization with respect to separately given objectives by a single keystroke.
Code generation for Pareto operations in the Bellman’s GAP compiler faces
many alternatives. This work explores and implements several new strategies
to compute Pareto fronts. In sorted implementations, the search space is kept
ordered based on the objective functions. In Pareto eager implementations,
the search space is kept as Pareto fronts at all times. Such implementations
are not trivial to achieve and face many problems in practice. Combinations
with other “product algebras” are not always easily possible.

For sorted implementations, six different algorithms were tested against a stan-
dard Quicksort. While evaluation of sorting operations on random data gives
mixed results, their use in the context of dynamic programming applications
favours a sorting algorithm we call Merge In-Place. For Pareto eager imple-
mentations, three new algorithms are introduced to combine Pareto fronts, the
most efficient of them joining two-dimensional fronts in linear time and space.
A new algorithm was added and successfully tested to improve runtimes on
Pareto definitions with more than two dimensions.

All implementations were benchmarked against each other on a set of bio-
logically motivated tasks. Our work shows that no strategy outperforms all
others in general. The nature of the search space decomposition has a major
impact on the relative performance of algorithm variants. A “naive”, unsorted
implementation can be shown to perform best in most cases, however.

Several code generation techniques for Pareto optimization are now provided
with the Bellman’s GAP compiler. Bellman’s GAP is available at:
http://bibiserv.cebitec.uni-bielefeld.de/gapc

3

http://bibiserv.cebitec.uni-bielefeld.de/gapc

Contents

List of Figures 9

List of Tables 9

1 Introduction 11
1.1 Bellman’s GAP . 11
1.2 Pareto Optimization . 12
1.3 Dynamic Programming in Bioinformatics . 13
1.4 Problem Statement . 14

2 Definitions 15
2.1 Algebraic Dynamic Programming . 15
2.2 Products . 16
2.3 Implementation . 17

2.3.1 Lexicographically Sorted Implementation 18
2.3.2 Pareto eager Implementation . 19
2.3.3 Generalized Implementation . 19

3 Integration in Bellman’s GAP 21
3.1 Arbitrary Dimensional Products . 21
3.2 Comparison Objects . 23
3.3 Comparing with Choice Functions . 25
3.4 Interfaces . 25

3.4.1 Step Mode . 26
3.4.2 Block Mode . 27

3.5 GAP-L . 27
3.6 GAP-C . 27

3.6.1 Pareto Products . 29
3.6.2 Comparators . 30
3.6.3 Lists . 30
3.6.4 Floating Point Accuracy . 31
3.6.5 Generalized Implementation . 31
3.6.6 Backtracing . 33
3.6.7 Algebra Characteristics . 34

3.7 GAP-M . 35

4 Computing Pareto Fronts 37
4.1 Two-Dimensional Products . 37
4.2 Three- and More-Dimensional Products . 39
4.3 Optimization . 42

5 Algebra Products and their Influence on Candidate Lists 45
5.1 Properties of Candidate Lists . 46
5.2 Candidate Reduction and Products . 48

6 Lexicographically Sorted ADP 51
6.1 Sorting Algorithms . 51
6.2 Optimization . 54

5

7 Pareto eager ADP 57
7.1 Floating Point Operations and Pareto Front Inaccuracies 57
7.2 Pareto Merge Algorithms . 58
7.3 Optimization . 62

8 Benchmarks 65
8.1 Setup . 65
8.2 Definition of ADP Tests . 66

8.2.1 Gotoh’s Algorithm . 67
8.2.2 RNA Folding . 67
8.2.3 RNA Alignment Folding . 67

8.3 Influence of Pareto Dimensions and Floating Point Accuracy 68
8.4 Optimizing pfyuk and

p

∨yuk . 69
8.5 Lexicographically Sorted ADP . 71

8.5.1 Randomized Trial . 71
8.5.2 Structured Trial . 72

8.6 Pareto eager ADP . 74
8.7 Putting it all together . 76

9 Conclusion and Outlook 81
9.1 Conclusion . 81
9.2 Outlook . 82

References 85

A Summary of New GAP-C Options 89

B Algorithms 91
B.1 Yukish and Bentley . 91
B.2 Sorting . 92

6

List of Algorithms

4.1 pfnosort . 37
4.2 pflex . 38
4.3 pfisort . 38
4.4 pfnosort multi-dimensional . 39
4.5 pflex multi-dimensional . 39
4.6 pfyuk . 40
4.7 marry . 41

S1 Quicksort . 51
S2 List-Join . 52
S3 Queue-Join . 52
S4 In-Join . 52
S5 Merge A . 53
S6 Merge B . 53
S7 Merge In-Place . 53

7.1 drop for
p

∨lex . 58
7.2

p

∨lex . 59
7.3

p

∨lex multi-dimensional . 60
7.4

p

∨nosort all dimensions . 61
7.5 comarry . 61
B.1 marry2D . 91
B.2 marrybrute . 91
B.3 S4 In-Join . 92
B.4 S5 Merge A, merge step . 93

List of Figures

1 Architecture of GAP-C . 28
2 Main abstract syntax tree (AST) classes . 28
3 Domination in the pfyuk algorithm . 40
4 Domination in the marry algorithm . 41
5 S4 In-Join example . 53
6 S5 Merge A example . 54
7 Domination in the comarry algorithm . 62
8 Reference or pointer lists in pfyuk . 69

9 Cut-off optimization for pfyuk and
p

∨yuk . 70
10 Runtime gain of individual data points for S3 and S7 in randomized trials 72
11 Runtime gain of individual data points of S7 against S1 for Fold2D and

Gotoh2D . 74
12 Runtime gain of individual data points of pflex and

p

∨lex for different appli-
cations . 75

13 Comparison of Fold2D and Ali2D . 79

List of Tables

1 Operators for options of Pareto eager ADP 50
2 Summary of test cases and inputs . 66
3 Pareto front sizes and runtimes for different dimensions and accuracy settings 68
4 Runtime gain of sorting algorithms S1-7 in randomized trials 71
5 Runtime gain of sorting algorithms S1-7 for different applications 73
6 Runtime gain of pflex and

p

∨lex for different applications 74
7 Summary of implementations . 76
8 Summary of all full program ADP benchmarks 77

9

1 INTRODUCTION

1 Introduction

Dynamic programming is an optimization method for solving complex problems by com-
bining (stored) sub-solutions of the same type to a solution of the bigger problem. In
many cases, dynamic programming allows to solve combinatorial optimization problems
over a search space of exponential size in polynomial space and time [1]. It was developed
by Richard Bellman in the 1950s, who formulated a set of properties an objective function
has to fulfil so that dynamic programming can be used to solve an optimization problem
[2] (see Definition 2.5). Traditionally, dynamic programming algorithms are formulated as
matrix recurrences with case distinctions over multiple tables storing sub-solutions. This
approach complicates both the construction and the analysis of algorithms.
Search space definitions and choices of objective function are co-dependent and directly
connected to subjects of code efficiency. Implementations are error prone, hard to optimize
and often almost impossible to debug. For many applications, one is not only interested in
the result of the optimization problem, but also in the structure of the candidate, creating
the need for rigid backtracing algorithms that compute the sequence of optimization steps
back from a global solution. Even small changes can lead to a full reimplementation of an
algorithm.

1.1 Bellman’s GAP

In 2004, Giegerich et al. set the foundation for the discipline of Algebraic Dynamic Pro-
gramming (ADP) [3], a framework for developing dynamic programming algorithms over
sequential data. It provides a clear separation of the issues of search space construction,
tabulation and scoring, removing error-prone indices completely out of the perspective of
the user. The first generation of ADP was realized as an embedded, domain-specific lan-
guage in Haskell [4]. In 2006, during the course of his doctorate, Peter Steffen created the
first compiler to compile ADP programs to imperative programming languages, utilizing
a Haskell dialect for problem definitions [5].
Bellman’s GAP is a second generation implementation of ADP, aiming to remove the re-
strictions imposed by Haskell and to extend the existing framework [6, 7, 8]. Together
with ADPfusion [9], implemented in Haskell, it marks the latest development of ADP. In
its current version, Bellman’s GAP is able to generate C++ code that is competitive to
handwritten programs out of a user created definition file. As such, it is a straightforward
process to extend, integrate, and optimize new algorithms for any application, regardless
if high level definitions or low level memory manipulation is needed. Generated code can
be trivially modified for code profiling or logging. Within the code generation process,
functions and structures can be defined with arbitrary arities as needed. With these posi-
tive properties, Bellman’s GAP lends itself for the investigation of dynamic programming
problems. Due to its iterative character, however, redefinitions of more general concepts,
such as the (functionally described) standard implementation of ADP, become very com-
plex. The need for such modifications has not yet been considered in the framework.
Bellman’s GAP consists of three essential components:

• GAP-L – a declarative Language similar to C and Java. All components of ADP are
declared in this language, although C functions can be included in the definitions.

• GAP-C – an optimized compiler that translates GAP-L programs to efficient C++

code.

11

1 INTRODUCTION

• GAP-M – a C++ runtime library that contains datastructures and functions for
compiled GAP-L code, as well as a module providing functions for accessing energy
parameters and computing energy contributions as used in RNA secondary structure
prediction.

In the course of this work, all three parts were modified, although the biggest changes are
limited to GAP-C.

1.2 Pareto Optimization

One of the remaining problems for many ADP applications is the efficient handling of
multi-objective optimization problems that arise when more than one criterion is used
to evaluate the search space. Both from a theoretical and a practical perspective, it is
useful to express the objective function of an optimization problem as the combination
of a choice function ϕ and a scoring function σ, ψ = ϕ ○ σ. Overall, solutions are com-
puted as their composite (ϕ ○ σ)(X) = ϕ({σ(x)∣x ∈ X}) over a search space X. Most
applications employ a scoring or cost function as σ that evaluates candidates to a numer-
ical value, ϕ choosing optimal candidates by minimization, maximization, or computing
candidates within a threshold of optimality. Many other useful types of choice functions
exist within the context of ADP, including, but not limited to, stochastic sampling, search
space enumeration, candidate counting, or the computation of score sums.

When confronted with two or more objective functions, the question on how to combine
them arises. For now, examples will be limited to two-dimensional cases to simplify defi-
nitions, although redefinitions for higher dimensions are within reach in many cases. Let
us consider two objective functions ψ1 = ϕ1 ○ σ1 and ψ2 = ϕ2 ○ σ2 defined over the same
search space that are combined with a product ∗.

Additive combination, Parametrized additive combination A classical approach is the ad-
ditive combination of all scoring functions into a new combined score, possibly adding
additional parameters to relate between them. As a precondition for this, however, the
corresponding choice functions need to be identical ϕ = ϕ1 = ϕ2, restricting the areas of
potential applications. For two dimension, we define

ψ1 ∗+ ψ2 = ϕ ○ (σ1 + σ2), (1)

ψ1 ∗+λ ψ2 = ϕ ○ (λσ1 + (1 − λ)σ2),0 ≤ λ ≤ 1. (2)

For all such instances, the relationship between the scoring functions should be regarded
and closely examined on its implications for the combined score. Eq. 1 should be used
for instances where both scores imply real costs of the same type that ultimately sum up,
disregarding their origin. The λ factor of Eq. 2 is used to relate between different kinds
of scores. In many cases, it is not clear how to choose λ optimally, and the parameter has
to be trained from a dataset or the choice is left entirely to the user. Different choices will
often result in different results of the optimization problem, obscuring the “actual truth”
of the problem. While this method works well in practice, this often artificial choice of λ
leaves room for improvement.

Lexicographic combination In 2005, Peter Steffen and Robert Giegerich suggested the use
of Lexicographic combinations in ADP [10], defining a primary and a secondary objective
for optimization:

(ψ1 ∗lex ψ2)(X) = (ϕ1, ϕ2)({(σ1(x), σ2(x))∣x ∈X}). (3)

12

1 INTRODUCTION

This method is useful if σ1 returns multiple co-optimal candidates that σ2 can choose
from. Refining the problem this way is often preferable to returning a large number of
solutions or choosing among them arbitrarily. Lexicographic combinations have a wide
array of applications outside of direct optimization, most noticeably for combining can-
didate string representations to (numeric) optimization results and for use in classified
dynamic programming [11].

Pareto combination If no meaningful way exists to combine or prioritize objective func-
tions, another mean of optimization is needed. This case arises, for example, when the
choice functions are different ϕ1 ≠ ϕ2, but both objective functions are equally important.
As an additional factor to consider, the reduction to just one result is not always advanta-
geous. Returning a list of co-optimals among all dimensions might be more comprehensive
in many cases. Pareto optimization is a common method for multi-objective optimization
[12]. Recently, Cédric Saule and Robert Giegerich proposed the use of Pareto combina-
tions in ADP [13]. Pareto optimality is defined by the concept of domination, implying
an ordering on all dimensions that is indirectly defined by the applied choice functions.
A candidate dominates another one if it is strictly better in one dimension, and equal
or better in all other dimensions. A Pareto front is defined as a set of non-dominated
elements. The result of a Pareto combination is the biggest possible Pareto front of all
tuples of values over all dimensions.

pf(S) = {(a, b) ∈ S ∣ ∄(a′, b′) ∈ S ∖ {(a, b)} such that (a′, b′) dominates (a, b)} (4)

(ψ1 ∗Par ψ2)(X) = pf{(σ1(x), σ2(x))∣x ∈X} (5)

In Sections 2.2 and 4, a more comprehensive definition of Pareto optimization in the
context of ADP will be given and a series of algorithms to compute Pareto fronts will be
highlighted respectively.

1.3 Dynamic Programming in Bioinformatics

In the context of bioinformatics, dynamic programming is one of the most prevalent
paradigms [14]. Many classical and modern problems of sequence analysis can be ex-
pressed as decomposable optimization problems and as such, can be solved using methods
of dynamic programming or ADP.
One of the cornerstones of biosequence analysis is the detection of regions of homology
in pairs of sequences. For this task, different edit operations are defined by assigned
scores. An optimal alignment is then defined as the sequence of operations either mini-
mizing or maximizing the score, depending on the problem. Examples include the famous
Needleman–Wunsch algorithm [15] and Goto’s algorithm [16]. Both are good examples
for additive combinations of objective functions, combining different respectively distance
or similarity values into one score. In order to create meaningful results, individual scores
have to be balanced based on known datasets, however.
A second common application is the field of RNA structure analysis. Using dynamic
programming, the search space of all possible foldings of an RNA molecule can be anal-
ysed and optimized to some specific measurement of accuracy. Examples for structure
prediction analysis are manifold, including both the folding of single sequences as well as
that of sequence alignments [17]. A variant poses the classic Sankoff problem, optimizing
sequence alignment scores (ψ1) and basepairing as a measurement for structure stability
(ψ2) at the same time as a parametrized additive combination. As a more recent appli-
cation, RNAalifold combines free energy and covariance scores [18, 19]. Other areas of

13

1 INTRODUCTION

RNA structure analysis include the restriction of the search space to specific motives for
detection in larger sequences [20].

Pareto optimization has been used in bioformatics mainly in a heuristic fashion for eval-
uating candidate subsets created by genetic algorithms. Only few examples exist where
Pareto optimization was used in the context of dynamic programming. Examples include
the shortest path problem [21] and the Allocation Problem [22]. Even fewer examples exist
in the context of bioinformatics. Schnattinger et al. [23, 24] promoted the use for solving
the Sankoff problem. Libeskind-Hadas et al. [25] used Pareto optimization to compute
reconciliation trees in phylogeny.

1.4 Problem Statement

The stated goals of this work are manifold, combining all aspects of the introduction:

• Next to identifying different algorithms for computing Pareto fronts, Saule and
Giegerich reported two alternative definitions of ADP in combination with Pareto
optimization, respectively called lexicographically sorted and Pareto eager imple-
mentation [13]. Instead of restricting changes to these implementations, the aim of
this work is to create a generalized interface for changes to the ADP definition.

• Subsequently, the described implementations, lexicographically sorted ADP and
Pareto eager ADP, will be realized along the new interface. Pareto optimization of
two or higher dimensions will be implemented. If applicable and the best optimiza-
tion is not directly discernible, multiple versions of algorithms will be implemented.

• Additionally, algorithms to efficiently compute higher-dimensional fronts in the stan-
dard formulation of ADP are discussed and implemented.

• Lastly, all algorithms are benchmarked to choose the best implementations that,
finally, will be compared against each other on four applications of bioinformatics.

Prior to this work, two-dimensional, as described by Saule and Giegerich [13], and selected
implementations for higher-dimensional Pareto operators have already been introduced
into the Bellman’s GAP framework together with the replacement of several code objects.
The essence of some of this work will be highlighted here again as it closely relates to the
new content of this thesis.

The rest of this thesis is organized as follows: In Section 2, basic definitions of ADP
and the integration of products are described, followed by an analysis of the specialised
ADP implementations. Afterwards, in Section 3, the integration of Pareto products and
the generalized implementation interface is presented, followed by a description of viable
algorithms for computing Pareto fronts in Section 4. In Section 5, the influence of algebra
products on the definitions of lexicographically sorted ADP and Pareto eager ADP will
be analysed. The realizations of lexicographically sorted ADP and Pareto eager ADP are
given in Sections 6 and 7 respectively. Finally, all benchmarks and a final conclusion will
be presented in Sections 8 and 9.

The main results of this thesis have been summarized in an article currently in submision
to the Algorithms journal.1 The Appendix of this version of the thesis has been modified
to also contain the notations used in this paper.

1T. Gatter, R. Giegerich and C. Saule, “Integrating Pareto Optimization into Dynamic Programming”

14

2 DEFINITIONS

2 Definitions

Before progressing to the details of the practical implementation, it is important to recall
the basic definitions of ADP and its domains. This section will closely follow the definitions
as presented in [6] and [13].

2.1 Algebraic Dynamic Programming

Each ADP problem is defined by three main components.

Definition 2.1 (Signature, Evaluation Algebra, Regular Tree Grammar) A signature Σ
is a set of function symbols and a data type place holder S. Each f ∈ Σ has a return type
S, and arguments of each either S or a fixed alphabet A. TΣ denotes the term language
described by the signature Σ, and TΣ(V) is the term language with additional variables
from a set V . An evaluation algebra defines a function for each f ∈ Σ as well as an objective
function ϕA ∶ [S] → [S], square brackets denoting multi-sets. A carrier set SA is set for
S. A(t) gives a result in SA for each t ∈ TΣ. Finally, a regular tree grammar G is defined
over a signature Σ as a Tuple (V,A, Z,P) where V is the set of non-terminal symbols, A
is an alphabet, Z is the axiom, and P a set of production rules in the form of

v → t with v ∈ V, t ∈ TΣ(V). (6)

The language of a tree function is then defined as

L(G) = {t ∈ TΣ ∣ Z →∗ t}. (7)

Definition 2.2 (Yield Function) The yield function y is of type y ∶ TΣ → A
∗, with y(a) = a

and y(f(x1, . . . , xn)) = y(x1) . . . y(xn), for all f ∈ Σ and a ∈ A.

These definitions now allow us to define the full ADP problem.

Definition 2.3 (Search Space) Given an input sequence z ∈ A∗, the search space is defined
over the combination of a yield function y and a tree grammar G.

Xz = {x ∈ L(G) ∣ y(x) = z} (8)

Definition 2.4 (ADP Problem Solution) Given a specific tree grammar G and evaluation
grammar A, an ADP problem is solved by computing

G(A,x) ∶= ϕA([A(x) ∣ x ∈Xz]). (9)

In the context of Bellman’s GAP, the definitions of G and A are given in the GAP-L
language. GAP-C then creates a C++ program solving the ADP problem. For this, search
space construction of X, evaluation of A(X), and the choice from it with ϕA are combined
into one algorithm. In order for a dynamic programming program to yield correct results,
the evaluation algebra A must satisfy Bellman’s Principle of Optimality.

Definition 2.5 (Bellman’s Principle of Optimality)

ϕA[fA(x1, . . . , xk)∣x1 ←X1, . . . , xk ←Xk] =

ϕA[fA(x1, . . . , xk)∣x1 ← ϕA(X1), . . . , xk ← ϕA(Xk)] (10)

ϕA[X1 ∪X2] = ϕA(ϕA(X1) ∪ ϕA(X2)) (11)

ϕA[] = [] (12)

15

2 DEFINITIONS

2.2 Products

While not strictly needed in the concept of ADP, products of algebras are of a great
practical value, bridging the gap to multi objective optimization without manually defining
a combined algebra.

Let us define C = A × B as the Cartesian product of two algebras. The solution of any
algebra product is a subset X ⊆ C. Analogous definitions can be found for combinations
of more than two products, accordingly resulting in an k-ary Cartesian product over k
algebras. In Bellman’s GAP, various products are defined, but only two of them are of
interest for this work. From the combinations introduced in Section 1.2, only lexicographic
and Pareto products have been implemented so far, the second of which as a part of this
work.

Definition 2.6 (Product of Algebra Functions) For all variants of products, the same
basic definition holds for two algebras A and B.

fA * B((a1, b1), . . . , (am, bm)) = (fA(a1, . . . , am), fB(b1, . . . , bm)) (13)

Definition 2.7 (Lexicographic Product) Given a function set(X) that reduces a multiset
X to a set and two evaluation algebrasA andB over the same signature Σ, the lexicographic
product A ∗lex B is defined as the functions fA∗lexB as in Definition 2.6 for all f ∈ Σ and
the choice function

ϕA∗lexB[(a1, b1), . . . , (am, bm)] (14)

= [(l, r) ∣

l ∈ set(ϕA[a1, . . . , am]), (14a)

r ← ϕB[r′∣(l′, r′)← [(a1, b1), . . . , (am, bm)], l′ = l]] (14b)

The definition of Pareto products is more complicated, as the original choice functions
can no longer be directly used. In Section 1.2, the notion of domination was already
introduced, but it was left open how exactly it was defined within ADP. Setting C as
above, A and B each must define a total order on its candidates in order to be suitable
for a Pareto product. For simplicity, in the context of this work, it will be assumed that
choice functions that are part of a Pareto product either maximize or minimize over a total
order. For this case, Saule and Giegerich could prove that the Pareto product preserves
Bellman’s principle [13]. Indirectly, defined over the choice functions ϕA and ϕB, A and B
each are totally ordered by relations >A and >B respectively. We say (a, b) ∈ C dominates
(a′, b′) ∈ C if a ≥A a

′ and b >B b′ or a >A a
′ and b ≥B b′. This sparks a redefinition of the

Pareto front operator as

Definition 2.8 (Pareto front operator)

pf>A,>B(X) = {(a, b) ∈X ∣ /∃ (a′, b′) ∈X ∖ {a, b} with a ≤A a
′, b ≤B b

′
}. (15)

However, this notation is somewhat cumbersome, and becomes even longer for higher-
dimensional products. Therefore, these details will be suppressed, and pf will be used
instead regardless of arity or underlying orders.

Definition 2.9 (Two-Dimensional Pareto Product) Given two evaluation algebras A and
B over the same signature Σ, the Pareto product A ∗Par B is defined as the functions
fA∗ParB as in Definition 2.6 for all f ∈ Σ and the choice function

ϕA∗ParB[(a1, b1), . . . , (am, bm)] = pf([(a1, b1), . . . , (am, bm)]) (16)

16

2 DEFINITIONS

The Pareto front size for a random set X of size N is expected as H(N), where H is the
harmonic number and closely related to log(N) [26, 27]. This interacts in a fortunate way
with dynamic programming, where for input size n, the search space X grows with O(2n),
and we can expect Pareto fronts of size O(n). This has been confirmed in practice in [13].

Given all previous definitions, generalizing the Pareto product for higher dimensions is a
straightforward process.

Definition 2.10 (Pareto Product) Given k ≥ 2 evaluation algebras A1, . . .Ak over the
same signature Σ, the Pareto product ∗Par{A1, . . .Ak} is defined as the functions

f∗{A1,...,Ak}
((a1,1, . . . , ak,1), . . . , (a1,m, . . . , ak,m))

= (fA1(a1,1, . . . , a1,m), . . . , fAk
(ak,1, . . . , ak,m)) (17)

for all f ∈ Σ and the choice function

ϕ∗Par{A1,...Ak}
[(a1,1, . . . ak,1), ..., (a1,m, . . . ak,m)]

= pf([(a1,1, . . . ak,1), ..., (a1,m, . . . ak,m)]) (18)

It is important to note that ∗Par{A1, . . .Ak} ≠ A1 ∗Par . . . ∗ParAk for all cases except k = 2
as Pareto products are not associative. The intuition for this is fairly simple, as the result
of a Pareto product no longer defines any order on the result set and therefore can not
be combined with another Pareto product. Hence, each k describes a unique product. In
Section 3.1, we will see how this is handled in practice.
For d > 2 dimensions, the Pareto front size for a random set X of size N is expected as
H(d)(N), where H(d) is the generalized harmonic number and closely related to logd−1(N)

[27]. Hence, increasing the dimension increases the expected front size exponentially.

2.3 Implementation

As can be seen by the definition, the Pareto product can be implemented simply by
providing a Pareto front operator as the choice function. We will see in Section 4 on how
these operators can be implemented in practice. For now, these details are not important.
Nevertheless, it should be noted that Pareto fronts can be computed more efficiently for
lexicographically sorted lists (according to the order imposed by the choice functions). For
now, we will have a look at different implementation strategies in the broader context of
ADP algorithms.
Following the example and definitions of [13], we will describe the implementation options
on an example production that covers all relevant cases.
Let f , g, and h be a binary, a unary, and a nullary function in Σ. The tree grammar rule

W f

X Y

∣ g

Z

∣ h

specifies the production of subresults of type W from subresults of types X, Y , and Z,
as well as an empty subproblem h, each computing a (for h constant) list of candidates.
This combination process can be defined by the introduction of three operators ⊗,⊕, # ,
respectively called “extend”, “combine” and “select”. We append lists of solutions with

17

2 DEFINITIONS

⊕ and ⊗ extends solutions from smaller subproblems to bigger ones. Generally, W is
constructed as

W = (⊗(f,X,Y) ⊕ ⊗(g,Z) ⊕ h) # pf, (19)

although h and pf must be more closely defined for sorted and Pareto eager implementa-
tions.
Beyond this example, algebra functions can have arbitrary arity and tree grammar rules
can have arbitrary height, but these cases can be handled analogously. Including a binary
operator, however, is important as it – representative for all operators of arity two and
above – does not conserve the Pareto property and is therefore more difficult to handle.

If there are no requirements on the search space to be sorted, the standard implementation
of ADP can be used:

l # pf = pf(l) (20)

l1⊕ l2 = l1++ l2 (21)

⊗(f,X,Y) = [f(x, y) ∣ x ∈X,y ∈ Y] (22)

⊗(g,X) = [g(x) ∣ x ∈X] (23)

In this context, ++ denotes a simple list concatenation for ⊕. The operator ⊗ extends the
set of solutions by applying the respective function of the evaluation algebra to combined
subsolutions.

If the Pareto operator requires a sorted input list, this version can by easily adapted by
changing Eq. 20 to apply a sorting function sort before applying the Pareto product. The
rule then becomes

l # pf = pf(sort(l)). (24)

While this is simple to implement, a more specialized version exists for sorted lists.

2.3.1 Lexicographically Sorted Implementation

In the lexicographically sorted implementation, operators are chosen in a way that all
intermediate results are kept as lexicographically sorted lists, from now on just referred to
as sorted. Two sorted lists can be merged in linear time by a function denoted as merge.
The function foldr executes a function given as first argument iteratively on the elements
of a list, using the provided second element as initial value.

l # pf = pf(l) (25)

l1⊕ l2 = merge(l1, l2) (26)

⊗(f,X,Y) = foldr merge [] [[f(x, y) ∣ x←X] ∣ y ∈ Y] (27)

⊗(g,X) = [g(x) ∣ x←X] (28)

h = sort(h) (29)

Eq. 27 iteratively merges the elements of a list of sorted lists. Please note that applying
any function of the evaluation algebra, here f, g ∈ Σ, to a sorted list will again result in a
sorted lists, as any such function is required to be strictly monotone by Bellman’s principle

18

2 DEFINITIONS

[13]. y is to be assumed fixed for every computation of a sorted sublist [f(x, y) ∣ x←X],
indicated by the formulation as y ∈ Y . Eqs. 27 and 28, therefore, result in sorted lists
again. Constant functions are required to create sorted results as initial values. In reality,
constant functions only create single elements that are naturally already sorted.

2.3.2 Pareto eager Implementation

In a more complicated approach, instead of constructing a list of all intermediate results
first, Pareto operators can be applied at each intermediate step. The rationale behind this
idea is to reduce intermediate list sizes as early as possible, potentially cutting down on
the overall runtime. For this, Pareto operators are included in the ⊕ and ⊗ phases. We
will later see that two Pareto fronts can be merged into a combined Pareto front in O(l)
time for two-dimensions, and in O(l logd−1 l) for d-dimensional products, where l is the

combined size of both fronts to join. We call this function
p

∨.

l # pf = l (30)

l1⊕ l2 = l1
p

∨ l2 (31)

⊗(f,X,Y) = foldr
p

∨ [] [[f(x, y) ∣ x←X] ∣ y ← Y] (32)

⊗(g,X) = [g(x) ∣ x←X] (33)

h = pf(h) (34)

Much like for the sorted implementation, h must create a Pareto front as an initial result.
In practice, constant functions usually create only single elements that are by definition
also Pareto fronts. By the same arguments as before, applying a function of the evaluation
algebra to an intermediate list that constitutes a Pareto front, the result will again be a
Pareto front. Since the choice function is already applied at individual steps in Eqs. 31,
32 and 34, # can simply return the identity.

2.3.3 Generalized Implementation

Following the previous implementations, the generalization is defined by three functions
we denote as nullary, append and choice, respectively applied to constant functions, to
combine results, or as a choice function. The essence of the ⊗ steps remains unchanged, as
they represent the core functionality of the ADP problem, combining solutions of smaller
subproblems into solutions of bigger subproblems. While specific choices for nullary,
append and choice can certainly violate the properties of ADP, changing the list generators
definitely will.

l # pf = choice(l) (35)

l1⊕ l2 = append(l1, l2) (36)

⊗(f,X,Y) = foldr append [] [[f(x, y) ∣ x←X] ∣ y ∈ Y] (37)

⊗(g,X) = [g(x) ∣ x←X] (38)

h = nullary(h) (39)

For the sorted and Pareto eager implementation, it is easy to see how each function needs
to be defined. To define again the standard implementation, we need to set nullary to the
identity function, choice = pf and append = ++, as Eq. 22 indirectly contains foldr + + by
removing the inner brackets of the otherwise nested list definition.

19

2 DEFINITIONS

While mathematically already well defined, this definition leaves open many practical ques-
tions. With the presence of potential other algebra products and arbitrarily k−ary Pareto
products, the functions nullary and choice are potentially complex to construct. A sim-
ilar problem arise for append, as it can depend on the choice functions of the underlying
algebras. Most interesting however, is the implementation of foldr, that can be inter-
preted differently outside of the context of lazy evaluation functional programming. As
an additional concern, these problems should not be in the hands of the user, but rather
should be solved by the ADP implementation generically. In the context of Bellman’s
GAP, this means that GAP-L should not be modified to accommodate the generalized
implementation and its realizations. Instead, the user should be able to switch between
implementations with simple compiler flags of GAP-C. This puts additional strain on the
compiler. In the next section, we will describe in detail on how this problem is handled.

In the course of this work, the term generalized implementation will be used to reference
this definition in general, and the sorted and Pareto eager implementation in particular.

20

3 INTEGRATION IN BELLMAN’S GAP

3 Integration in Bellman’s GAP

The integration of new concepts into the Bellman’s GAP system can be a daunting task,
as new complex constructs need to be embedded into a system of tight dependencies.
While the definitions of the last section imply a three phase computation (search space
construction of X, evaluating the algebra A(X) and application of the choice function),
Bellman’s GAP does not make a clear distinction of these phases. Identifying the correct
places to insert changes is often not a trivial task. In theory, GAP-C was designed to
generate code for arbitrary (imperative) programming languages [6]. As we will see in
Section 3.6, the GAP-C compiler does not directly generate code, but rather creates an
object tree representation of the program first, adding another layer of abstraction to the
problem. As a direct result of this, for example, no C specific concepts can be directly
integrated.
Lingering over everything is the demand for optimization. In many cases, it is not simply
enough to add functionality, but rather to bridge to the gap between the usually contrast-
ing objectives of maintainability, generality, and optimality, while keeping concepts broad
enough to also apply to programming languages outside of the C context.
We will approach this task in multiple steps, first explaining the concepts of implementa-
tions before addressing the actual changes within the Bellman’s GAP system.

3.1 Arbitrary Dimensional Products

Arbitrarily dimensional products pose a unique challenge for any ADP system, as variadic
functions can cause various problems for implementations. Within the Bellman’s GAP
framework, functions of the compiled code can be generated as needed during the code
generation process. Varying arities, therefore, do not pose any directly visible problems
other than their representation within the compiler. The GAP-C compiler itself is written
in C++. As an extension of C, C++ supports basic variadic functions in all versions.
With the C++ standard, also template support for variadic functions has been introduced.
Following this rationale, at least in theory, products of any dimension could be expressed
as single objects of the same class within the program code. The practicality, however, is
questionable.
A similar question arises when considering the definitions of the GAP-L language. In
its original definition, products can solely be defined via infix notation, allowing only
two algebras to be combined by one product at the same time, setting a hard limit for
dimensionality. In the previous section, it was already established that a Pareto product
cannot be combined to the results of another Pareto product, as Pareto products are non-
associative and this will no longer pose a well defined problem. Effectively, this results in
the need for a special operator for each arity, a problem that could be easily remedied by
the introduction of an (alternative) prefix notation for products.
While mathematically elegant, parsing a prefix operator to a single representing object is
not a simple task and should only be attempted if it is of value to the problem. When
analysing the structure of GAP-C, one will notice that the overall architecture was built
to create code for only two-dimensional products, thus handling them as binary trees
throughout the program. In fact, this tree-like structure remains visible in the generated
program code. All signature and choice functions are created individually for each algebra
product and each algebra (at the leaves of the tree), each respectively calling their children
functions in the tree to compute their own results. Ultimately, this effect can also be seen

21

3 INTEGRATION IN BELLMAN’S GAP

in the storage of candidates in the solution list, each product representing a tuple in
a nested type structure. For now, letting aside the actual notation in GAP-L and the
representation of tuples in C++ code, let’s say we have algebras A1, . . . ,A5 with return
types of SA1 , . . . , SA5 respectively. The product combination

(A1 ∗Par A2) ∗lex (A3 ∗lex A4 ∗lex A5)

will then result in an overall candidate type of

((SA1 , SA2), ((SA3 , SA4), SA5)).

The build ⊗ and combine ⊕ phases are constructed so that they will create lists of can-
didates over all algebras at the same time, accordingly calling the root functions of the
product tree. During execution, for each product along the tree, the outer tuple is dropped,
and the left and right elements are passed down to the respective children along the tree.
After all children return their results, the result of each product is computed according
to its definition. For our example, the leftmost lexicographic product would split up the
problem into tuples

(SA1 , SA2) and ((SA3 , SA4), SA5)

and join the results of the left-hand Pareto combination and the right-hand other lexi-
cographic products. It should be noted that no elements are actually copied during this
process, but rather pointers on substructures of the same candidate list are passed down.
While very efficient, this behaviour can be critical, as we will see later on.
Choice functions of Pareto products play a special role in this process, as they in fact
can not simply call the choice functions represented by their children on the passed down
substructure lists. Instead, the choice functions are called to compare individual pairs of
candidates (see Sections 3.2 and 3.6.1).
Introducing k-ary nodes with k > 2 would result in a massive change of GAP-C, most
noticeably in the structural layout and the generation of candidate lists. By introducing
a new k-tupel datastructure, the code generation of practically all signature and choice
functions would need to be changed to accept this datatype. Additionally, new generators
would have to be implemented to create functions for the new products that do not rely
on a binary call hierarchy. We introduce the following theorem, showing us that this effort
is not needed for most functions.

Theorem 3.1 (Relation of Algebra Products) Let us define k ≥ 2 evaluation algebras
A1, . . . ,Ak over the same signature Σ and Ci,j = Ai ∗ . . . ∗ Aj with 1 ≤ i < j ≤ k and
arbitrary parentheses. Then for any algebra function f ∈ Σ the following holds: for any
combination of parentheses in the product C1,k ∶= A1 ∗ . . . ∗Ak, fC1,k

can be transformed
to f∗{A1,...,Ak}

by a series of applications of functions rbleft{((x1), x2)} = (x1, x2) and
rbright{(x1, (x2))} = (x1, x2).

Proof. By induction:
k = 2:

fA1∗A2((a1,1, a2,1), . . . , (a1,m, a2,m))

Eq. 13
= (fA1(a1,1, . . . , a1,m), fA2(a2,1, . . . , a2,m))

Eq. 17
= f∗{A1,A2}((a1,1, a2,1), . . . , (a1,m, a2,m))

22

3 INTEGRATION IN BELLMAN’S GAP

k > 2:

rbleft{fC1,k−1∗Ak
((c1, ak,1), . . . , (cm, ak,m))}

Eq. 13
= rbleft{(fC1,k−1

(c1, . . . , cm), fAk
(ak,1, . . . , ak,m))}

I.H.
= rbleft{(f∗{A1,...,Ak−1}

((a1,1, . . . , ak−1,1), . . . , (a1,m, . . . , ak−1,m)), fAk
(ak,1, . . . , ak,m))}

Eq. 17
= rbleft{((fA1(a1,1, . . . , a1,m), . . . , fAk−1

(ak−1,1, . . . , ak−1,m)), fAk
(ak,1, . . . , ak,m))}

= (fA1(a1,1, . . . , a1,m), . . . , fAk
(ak,1, . . . , ak,m))

Eq. 17
= f∗{A1,...,Ak}

((a1,1, . . . , ak,1), . . . , (a1,m, . . . , ak,m))

or

rbright{fA1∗C2,k
((a1,1, c1), . . . , (a1,m, cm))}

Eq. 13
= rbright{(fA1(a1,1, . . . , a1,m), fC2,k

(c1, . . . , cm))}

I.H.
= rbright{(fA1(a1,1, . . . , a1,m), f∗{A2,...,Ak}

((a2,1, . . . , ak,1), . . . , (a2,m, . . . , ak,m)))}

Eq. 17
= rbright{(fA1(a1,1, . . . , a1,m), (fA2(a2,1, . . . , a2,m), . . . , fAk

(ak,1, . . . , ak,m)))}

= (fA1(a1,1, . . . , a1,m), . . . , fAk
(ak,1, . . . , ak,m))

Eq. 17
= f∗{A1,...,Ak}

((a1,1, . . . , ak,1), . . . , (a1,m, . . . , ak,m))

Effectively, this theorem tells us two important things. For all functions f ∈ Σ, k-ary
products produce de facto the same candidates as a series of applications of k − 1 binary
operators, as long as the overall order of algebras stays the same. Changing the imple-
mentations of algebra functions, therefore, is unnecessary. Additionally, the proof gives
a constructive algorithm on how to transform between the two cases for the application
in k-ary choice products. Since k is independent of the input length of the problem, the
transformation can be done in O(1) time.

Following this, it is sensible not to change the definitions of either GAP-L or GAP-C to
specifically handle k-ary products. Instead, all products are expressed as a combination
of binary operators as if such an expression was valid. GAP-C will then detect this case
for choice functions (and only there), and transform them to the k-ary case where needed
without changing the overall candidate structure. More specifically, multi-dimensional
products will show up as a cluster of the same product type in the product tree. When
generating the choice functions for each product, GAP-C will perform a depth-first search
for connected products of the same type, starting at the current product as the root.
This already solves the problem of Theorem 3.1 and yields the series of operations needed
for the transformation between binary and k-ary products. After this, the k-ary choice
function can be directly generated with minimal effort.

3.2 Comparison Objects

Another complex problem arises for the interfaces of the generalized implementation, as
the definitions are potentially dependent on the choice functions of underlying algebras.
For the sorted and Pareto eager implementations, the implicit order defined by the choice
functions is needed for object comparisons. In practice, the question arises on how these

23

3 INTEGRATION IN BELLMAN’S GAP

definitions can be generated and passed to functions of the generalized implementations.
In Bellman’s GAP, this will be handled by comparison functions (from now on called
comparators).

C++ has full support for passing function pointers as parameters. However, function point-
ers are problematic for performance, as they often lead to false branch predictions [28]. As
the comparators are called in the inner loops of both the sorting algorithms and the ADP
program, using pointers instead of direct function calls or inlined comparisons could result
in a noticeable performance drop. Early test versions using function pointers showed an
increase in computation time of up to a factor of 10.
To avoid this problem, it is usually recommended to pass objects instead of functions.
Ideally, the object is defined constant and contains only static functions, creating pre-
dictable jumps at every stage. Such function calls still show an overhead to inlined code,
but perform better than function pointers. For the Pareto implementations, as a design
goal, individual comparator calls should be minimized over all code. At the same time,
comparisons within each individual comparator should be minimized. These goals are
inherently contradicting to each other as many algorithms don’t always need to compare
all dimensions at the same time, but instead need individual tests. On the other hand,
whenever a comparison must include all dimensions it is impractical to call them indi-
vidually. Creating code for all possible combinations over arbitrary dimensions poses a
combinatorial problem, as already for 4 dimensions this would create 16 different com-
parators that would need to be passed and organized, although most of them would not
be needed. The mechanism to call the correct function would create multiple conditional
jumps, again slowing down the process. As a compromise, only two comparators will be
generated in Bellman’s GAP: one comparing all dimensions and one comparing a single
dimension, its index passed as a parameter.

As established in the last section, candidates are created as binary structures over all
products. When passing down substructures along nested function calls, only references
to substructures of the original candidates are passed. Effectively, this means that only
one global sorting over all candidates can be established, unrelated to the used implemen-
tation of ADP. For sorted Pareto implementations, this effectively means that only one
such product can exist as two competing sortings cannot be executed on the same list of
candidates. Likewise, the sorting must be completed before applying the choice function
of the topmost product, regardless if it is a Pareto product or not.
Effectively, comparators therefore need to implement two steps. First, the substructure of
the Pareto operator needs to be extracted out of the full candidate structure. Then the
elements that are needed for comparison are extracted and compared. For both steps, the
product tree serves as a guide. Starting from the global root, in a depth first fashion, the
root of a Pareto product is searched, and the path to it is transformed into the operations
needed to extract the corresponding candidate substructure. Then, starting at the root of
the Pareto product, a breadth first search is executed to extract all dimensions by Theo-
rem 3.1.
Comparators for all dimensions are generated as nested conditionals, only calling the next
dimension if the current dimension was not sufficient to determine the order between two
objects.
Comparators for individual dimensions take an index of the dimension to compare. For
implementation in C++, if structures can be slow because of false branch predictions. It
is more efficient to rely on switch case, instead of nesting if clauses, as it reduces this risk
[28].

24

3 INTEGRATION IN BELLMAN’S GAP

3.3 Comparing with Choice Functions

For Pareto products, the underlying choice functions are not directly applied to lists of
candidates, as is the case for all other products. Instead, the choice function is used to
compare only two candidates at the same time. For this, three basic cases need to be
distinguished for any efficient implementation.
In most cases – if not nearly all – choice functions in Pareto products are defined as
minimizing or maximizing the candidate score. With such functions, as a standard, GAP-
C will generate all choices over a list of candidates, meaning it will take a list as input and
return a single result. In order to find the smaller or bigger of two candidates, the two
elements would need to be copied into a new list, the list passed to the choice function,
and the return value compared to the original values. Irrespective of the kind of objects
to be compared, however, the smaller or bigger operators of C++ could be used directly to
compare them instead of using the choice function. This saves multiple memory operations
and function calls per comparison.
However, when deviating from minimization or maximization, this speed up is no longer
possible. Instead, the values to be compared are copied into a new list as described above.
Since the choice functions should ideally define an ordering, only one element should be
returned that can be taken as the result. Equal operators need to be defined for all objects,
so the returned value can always be compared to the original input to find out which one
was returned as better.
As a third option, not always just one element is returned by the choice function. In this
case, the first element will always be used. It is up to the user to guarantee that this is in
fact well defined.

3.4 Interfaces

The most challenging task in the implementation of the generalized interface is to identify
the correct positions to insert the calls to nullary, append, and choice in the generated
ADP code. We will see that choice and nullary functions will be fully generated in the
code generation process, while append functions will be realized via templated function
calls to functionality added in a header file.

Of the three functions to insert, the choice interface is the easiest to realize, as choice
functions are already applied in the original implementation of Bellman’s GAP. Naturally,
this is done at the end of each production of the tree grammar (if one is set by the user).
The generalized implementation can directly profit from this existing architecture. For
the current use cases, only minimal change is needed for the choice function generators.
In fact, for the sorted implementation no changes are needed at all. For the Pareto eager
implementation, the choice function is set up to return the identity. A generator for this
already existed hidden within the code.
Generating the nullary function is more complicated, although even here the variation
is minimal for the needed Pareto implementations. For the sorted implementation, the
nullary function must return a sorted list. Therefore, it is generated as an identity func-
tion, but with an added sorting function that sorts the given lists in place. The global
comparator objects described in the last subsection are used for element comparison. In
the Pareto eager case, the Pareto front of the candidate lists needs to be computed. This
task is solved by applying the original choice function, and the same generation process
can be used. Effectively, to generate nullary functions, the original choice functions are

25

3 INTEGRATION IN BELLMAN’S GAP

duplicated in all algebras and then the specializations for choice or nullary functions are
respectively created during code generation. The most problematic part of the implemen-
tation of nullary functions is the question of when to apply them. For most grammars,
this is not needed at all, as technically signature functions in Bellman’s GAP cannot re-
turn more than one element. Therefore, all constant functions return exactly one element
which can not be influenced by a selective or ordering nullary function. If a nullary function
would remove a constant single item, the rule would be useless. It is possible, however,
to create candidate lists out of k-ary rules only consisting of moving index boundaries
over the input sequence, hence adding a constant element for each index combination to
a sublist.
Before answering the question of when to apply nullary in full, an analysis of how Bell-
man’s GAP generates product rules is needed. At the same time, we will answer how
the append operation can be included. In Section 2.3, we saw an example production of
a tree grammar rule with alternative functions of different arities. All alternative pro-
ductions are combined by the combine operator ⊕ after building up candidates by the
build operator ⊗ like in Eq. 19. For the standard implementation of Bellman’s GAP, the
combine operator does nothing. Instead, the combine steps are integrated into the build
steps that are executed in strict order after each other. The foldr structure of the build
steps is realized by nested loops, each looping over its respective candidate set, applying
the evaluation algebra in the innermost loop to create a new candidate. New elements are
individually added to the end of the candidate list. So for our example, the loops for X
and Y are nested, and the function f is applied in the middle. Afterwards, a single loop
for Z is created.
The arity of each function is directly linked to the number of nested loops, although an
important distinction has to be made that is not strictly present in the implementation ex-
ample. Algebra functions can take both terminal and non-terminal arguments. Terminal
arguments are fed as moving boundaries or constant functions. Within Bellman’s GAP,
loops that are the result of a moving index boundary are always the outermost loops of
the nesting, the loops created from subresults forming the inner loops.
The nullary function is applied only when the loops of one alternative production ex-
clusively contains terminal production rules, hence exclusively consisting out of moving
boundaries. The rationale behind this is as that all elements but the innermost loop are
fixed values by Eq. 37. For the generalized implementation, Bellman’s GAP assumes all
inner non-terminal functions to have a properly defined choice function. Therefore, the
sublists can be expected to follow the properties of the implementation, i.e. sorting or
Pareto. Additional checks to ensure that the innermost candidate set has indeed a defined
(ordering) choice function are conceivable, but ultimately most likely unnecessary with
proper tree grammar design.
For the append functionality, different changes are needed depending on different imple-
mentations of foldr. For both, however, functions need to be added after the innermost
loop, appending elements that were created within the last execution of the loop – and
only those – to the overall solutions.

3.4.1 Step Mode

The step mode is the most literal implementation of foldr without any additional logic.
For each non-terminal, a global list of candidates is created and initialized as empty. For
each alternative production, additional lists are created that are filled in the innermost
nested loops respectively. After each execution of an innermost loop, the append function

26

3 INTEGRATION IN BELLMAN’S GAP

is called, combining the elements of the local list with those of the global list, saving the
results again in the global list. The local list is emptied afterwards. Additional parameters,
such as comparators, are passed as needed. This mode, however, is potentially problematic
for performance. Taking the sorted implementations as an example, let us define M as the
number of sorted sublists that are joined. The elements of the first merge are then sorted
M times. The elements of the penultimate are sorted M − 1 times and so forth. Each

element is therefore sorted on average O(
M(M+1)

M) = O(M) times. Additionally, in order
to add a candidate, it potentially needs to be copied twice to insert it into the respective
global and local lists, instead of adding it just once.

3.4.2 Block Mode

To eliminate these problems, a second mode was created with a different interpretation
of foldr. Instead of directly calling append on each new sublist, all sublists are collected
first. Like in the original implementation, a global list is created and filled by adding indi-
vidual candidates to the end of the list, one at a time. However, a second list that is filled
with integer indices of the sublist boundaries is kept. More specialized implementations
for C++ exist, but in order to keep the possibility of generating code for other imperative
languages as well, a universal structure to save list positions was chosen. The index list
is filled by function calls after each innermost loop, adding the index of the current list
end. This is not an immediate disadvantage, since also in step mode each element needs
to be added once to a list and adding does not become much slower for longer lists. Only
if little memory is available this becomes critical.
All sublists can then be joined using different algorithms (see Sections 6.1 and 7.2 for
details). For example, for the sorted implementation, a list of sorted sublists is passed
that can be interpreted as an intermediate step of an ongoing bottom up two way merge-
sort. If M is the number of sublists, using mergesort, each list element is then only
sorted O(log(M)) times. For Bellman’s GAP, the switch between step and block mode is
implemented as a command line argument.

3.5 GAP-L

Only few changes to the GAP-L language were needed in the course of this work, mainly
because no special notation was included for k-ary products (see Section 3.1). Prior to this
thesis, the Pareto product was included under the head symbol “ˆ”. To the definitions in
[6], the rule

product:

product ’^’ product |

...

needs to be added as the only change.

3.6 GAP-C

Most of the changes to the framework for this thesis have been done to GAP-C. The
compiler consists of three modules as shown in Fig. 1: A frontend, a middle-end, and a
backend.

27

3 INTEGRATION IN BELLMAN’S GAP

BackendFrontend Middle-end

Lexer

Parser

Semantic
Analyses

Codegen

C++
Typechecker
Table-Design

Ta
rg

e
t

C
o
d

e

A
S

T

...

...

Figure 1: Architecture of GAP-C. Image taken from [6].

Symbol

Terminal NT

Grammar

1..n

1

Alt

Simple

Block

Link

Multi

1 1..n

Fn_Arg

Const

AlgebraInstance

Product

Single

Times Statement

Foreach Fn_Call

Expr

Mult

Add

Filter
...

...

Fn_Def

1..n

1..n

1

1

1

...

2

1

1

1..n

1..n

1

1..n

1

1..n
1

SignatureAST

1..n

11

Figure 2: A diagram of the main abstract syntax tree (AST) classes. Image taken from [6].

28

3 INTEGRATION IN BELLMAN’S GAP

The frontend interprets the GAP-L definitions and creates an abstract syntax tree (AST)
out of them. For this, Flex2 is used as lexer, Bison3 serving as parser. For Pareto products,
only the rule extension described in Section 3.5 needed to be added to the parser rules,
and the head symbol was added in the lexer as a new symbol.
More complex changes were needed for the AST that serves as an object representation
of the code to be generated and all contained functionality. The basic layout of the AST
is depicted in Fig. 2. The core of the definition is the root AST object that combines
all other objects and handles all function calls during the code generation process. The
grammar is represented on the left side of the graph. The symbol class represents all
terminals and non-terminals of the definition. Each non-terminal contains a list of Alt
objects that describe the production rules. Subclasses of Alt handle different types of
rules:

• Alt::Link is used to link back to terminals or non-terminals

• Alt::Simple is used to apply evaluation algebra functions

• Alt::Block is a grouping of alternatives

• Alt::Multi is a grouping for multi track ADP

The right side of the diagram shows the function and product definitions. Fn Def represent
final code functions. Ultimately, for each evaluation algebra function, for each product and
for each non-terminal respective Fn Def are created. A function object essentially contains
a list of function parameters and a list of statements (Statement). Statements contain all
functionality of the later program, defining everything from loops and conditionals to
variable assignments and function calls. A class of expressions (Expr) exists that defines
calls with return values. Both expressions and statements can reference external functions
of GAP-M.
The middle-end modifies the AST and is responsible for the code generation process.
While the front end only returns a nested structure of objects in the AST, the middle-end
creates the code for each function, i.e. it creates Fn Def objects and fills them with the
appropriate lists of Statement objects.
Finally, the C++ code is generated out of the AST objects in the backend. This is handled
by the Cpp object that contains functions to convert Fn Def, Statement and Expr to C++

code.
In the following paragraphs, the most important changes to the AST and code generation
steps are summarized by topic.

3.6.1 Pareto Products

For the support of Pareto products, a new object class was created in the Product class.
For all implementations of Pareto front operators and for all implementations of ADP,
the same class is used. Which kind of Pareto operator and ADP is generated is based on
command line parameter options given by the user. For a summary, see Section A in the
appendix.

The code generation of products is relatively complex, as multiple objects are involved.
For the new Pareto products only the choice function generation had to be changed. Each
product is assigned a corresponding algebra object in the binary product and algebra

2http://flex.sourceforge.net/ [18.09.2015]
3http://www.gnu.org/software/bison/ [18.09.2015]

29

3 INTEGRATION IN BELLMAN’S GAP

trees. When the code generation is called on a product, it calls the code generation of
its partnering algebra, passing itself as a parameter. The algebra function loops over all
functions of the evaluation grammars of its left and right children, represented by Fn Def
objects, and generates a new Fn Def for each, passing the children and the product as
parameters. In the Fn Def object, finally, the function content is generated depending on
different parameters. For the standard implementation of ADP, only the Pareto operator
kind is important and is encoded in the product objects as an enumeration of possible
values and a boolean operator indicating if multi-dimensional Pareto support is needed
(for products of 3 or more dimensions). Both parameters are passed up to the product
from the AST object AST root.
For sorted implementations, another piece of information is needed. As already estab-
lished, the element list can only be sorted at the root of the product tree, otherwise
substructures would be modified without context. However, a Product object in GAP-C
can only know its children, never its ancestors, therefore it cannot know if it is at the root
or not. As an easy remedy, the root elements are marked by an object parameter before
calling the code generation.

3.6.2 Comparators

Comparators are created whenever a sorting of the search space is needed or other tem-
plated functions are created that need such objects, regardless of which formulation of
ADP is used. If a root product has been marked accordingly, it will automatically create
a corresponding comparator. This functionality is executed in the Fn Def objects while
generating the choice functions. The comparison statements are generated as described in
Sections 3.2 and 3.3.
To accommodate this, two new classes were introduced to GAP-C. First of all, compara-
tors were assigned a new Operator type, meant to generate a general interface for passing
functions as parameters. In the current version, Operator objects generate a C struct that
implement an operator() function (after which the feature has been named), a construct
that makes objects callable like functions and is faster than using function pointers. The
general concept of operators, however, is kept broad enough to allow implementations in
other programming languages. In C++, operators are defined as global, constant, static
objects. The code segment of the operator is defined as a list of Statement objects. Ad-
ditionally, constant values can be added to the operator. This is used, for example, to
elegantly pass the available dimensions of a comparator to interfaced functions.
The second new class is a switch-case statement that was defined in the Statement class
of GAP-C. Cases can be added as tuples containing the case value and a list of Statement
objects as substatements. So far, this construct is only used within comparators, but it
can be added universally throughout GAP-C.

3.6.3 Lists

Prior to implementing Pareto products, candidates were kept in a custom list implemen-
tation with limited standard list functionality. In its most basic characterization, the old
implementation could be described as a low level deque in the sense that it was constructed
as a double linked list of arrays of a fixed size. Elements could be added to the end and
accessed in O(1) time. Other than that, no further operations were supported. For various
Pareto computations, however, full list support is needed, meaning elements need to be

30

3 INTEGRATION IN BELLMAN’S GAP

inserted and removed from arbitrary positions.
Therefore, the original implementation was replaced by a standard deque implementation
from the C++ STL library. This has a direct impact on all algorithms. Elements can be
accessed in O(1). Adding or removing elements at the end or the start of the list can
also be done in O(1). Inserting or removing elements from other position costs O(N) or,
more exactly, memory operations for every position to the nearest end of the list. Overall,
deques perform well for appending and iterating over them4, the most common operations
performed in ADP. Since deques can be fragmented in RAM, they scale well for programs
with a huge demand for memory, a common problem for ADP. Their performance was
tested and confirmed superior in practice compared to the old implementation and other
types of lists (data not shown in this work).

3.6.4 Floating Point Accuracy

Floating points can be a problematic part of ADP definitions. As a standard, GAP-C
generates C++ doubles for all floating point numbers, disregarding how much precision is
actually needed. While this poses a potential performance problem, since unnecessarily
large objects are handled and copied at runtime, it is not dangerous to do so. A much
greater problem is the accuracy of floating point values.
Many real numbers cannot be precisely represented by floating points. Similarly, some
floating point operations cannot precisely represent the true arithmetic operation. Since
the definition of algebra functions is left fully to the user, Bellman’s GAP has no guar-
antee that all operations are indeed safe, rendering full comparisons of floating values a
rather dangerous operation. This can be, for example, problematic when searching for
co-optimals in a set of candidates, when slight variations after the precision threshold sep-
arate them into different sets, while in reality they should be the same. Because of this,
some existing Bellman’s GAP applications, such as the covariance algebra for alignment
folding, contain their own types of comparators that allow a certain margin of error in
order for two values to be the same. Implementing such a change while remaining oblivi-
ous to the internal operations of Bellman’s GAP is a dangerous task, however, as the user
might either forget to overwrite some operators or overwrite too many. Until recently, this
had caused faulty memory operations even in some in-house implementations.
Because of this, a new command line parameter was added to GAP-C that can automat-
ically set the precision for all compare operations in the generated code. This is done by
adding a header file that overwrites all needed operators if needed. The precision is set
globally by a single constant flag in the generated code. This option should only be used
if no prior handling of this issue is present, as competing overwrites of operators might
cause undefined behaviour.

3.6.5 Generalized Implementation

The generalized implementation introduced the biggest change to GAP-C, as practically all
components are affected. The ADP implementation and the mode of the implementations
are passed by the user as command line arguments. For internal usage, all involved
options are referenced by the namespace ADP Mode. Names of comparators and involved
functions are created in the AST object and passed down to all components to keep them
consistent without redefinitions throughout the code.

4http://baptiste-wicht.com/posts/2012/12/cpp-benchmark-vector-list-deque.html [18.09.2015]

31

3 INTEGRATION IN BELLMAN’S GAP

Various parts of the internal code generation are handled in different objects:

• creation of Fn Def objects for each nullary function in AST

• content generation for nullary and choice in Fn Def

• integration of nullary, append and choice calls in Symbol and Alt

• integration of append implementations via a library interface

Nullary functions are created as copies of choice functions. In GAP-C, empty choice func-
tion objects will be created alongside of parsing the GAP-L definitions file. Afterwards,
options needed for the content generation will be passed to the objects by the AST root
object. For the generalized implementation, an enumerator is set that describes the mode
and the kind of ADP implementations. An additional flag is set to the root products
defining which comparators/operators need to be generated.
If a code specialization was specified in the command line options, the AST object will
recursively loop over all products and algebras and duplicate all choice functions. To
differentiate between original choice functions and newly copied nullary functions, an enu-
meration flag is set to the Fn Def objects. When code generation is called on each product,
Algebra objects will automatically call the code generation of the newly created nullary
functions as well. It is then up to the Fn Def objects to generate code for each choice and
nullary function.
This behaviour is mostly motivated by the Pareto eager implementation of ADP, where the
nullary function effectively is the original choice function. Using this method, the original
code generation can be used for the nullary function without any kind of modification.
Similarly, for the sorted implementation, the original choice function can be kept without
any modifications. As such, problematic re-implementations can be avoided. There is one
setback to this approach, however, as one cannot simply exchange implementations by,
for example, switching header definitions of needed functions, something that could also
be done by the end user to create his own specialized implementation of ADP. So far,
GAP-C has to be modified to allow new specializations. Should the need arise for this
in the future, a simple switch could be introduced so that Fn Def objects create calls to
predefined template calls.
It should be noted that this problem cannot be fully avoided for the generation of com-
parators/operators, as they practically define the core operation for all interfaced function
calls, and therefore are based on the definitions of the underlying algebras and products.
New types of ADP implementations likely will require the implementation of new Operator
types.

After duplicating choice functions to differentiate between nullary and choice generators,
the names of the respective functions are passed to the Symbol objects from the AST
object. Symbol objects will recursively pass down all names to its underlying Alt objects.
Similarly, generation options for mode and comparator/operator names are passed down
to each involved object of the production rules. Unfortunately, the integration of function
calls is not a straightforward process. The standard implementation is generated in two
steps. Initially, for each alternative of the production rule (Alt objects) an individual list
variable is generated, but initialised to reference the same list as the global candidate list of
the non-terminal. These intermediate variables are then removed in a second optimization
step. To generate code for the step mode, this optimization process needs to be disabled,
concurrently also removing the assignment of the local lists of each alternative production
to reference the global list. At the same time, for block mode, the optimization can
remain unchanged. However, while generating the function calls to append and nullary

32

3 INTEGRATION IN BELLMAN’S GAP

functionality in the Alt objects, the global list is only indirectly known to each object.
To further complicate things, for Alt::Links local lists cannot be removed. Even more so,
some code that should be generated by Alt objects is indeed created by Symbol, most likely
to avoid passing down information. For the implementation of the generalized interface
this effectively means that the code is fragmented heavily across both object definitions.
nullary calls are strictly created in Alt::Simple. choice calls are strictly created in Symbol
(unchanged to old versions of GAP-C). The generation of append depends on the defined
mode. For step mode, shared between Alt and Symbol, the append function is called
directly after each time a new sublist is created. If the append is within a nested loop
structure, another call is added to empty the current local list, so no items are added
twice. This is needed as the original local variables that are used are defined in scope
right before the nested loop. For block mode, instead of directly calling append, a marker
function is called. After the code for all alternative productions is created, the append
function is called on all sublists at the same time.

Marker functions and append functions are implemented via template interfaces using the
C++ Template functionality that allows generic typing that is deducted to the correct types
at compile time. These kinds of interfaces are already used for functions defined in the
GAP-M library and therefore do not pose a new restriction to the language system, al-
though templates are not strictly supported for all languages that GAP-L could be used to
compile into. Ultimately, this methodology simplifies the switch between different imple-
mentations to the point of simply including different header files with the corresponding
definitions. For efficiency and consistency, the interface of append needs to be strictly
defined, again depending on the mode.
For step mode, the interface is:

append(global list, new sublist [, operator [, operator [...]]] [, flag keep co-optimals])

The result is returned not as a return value, as this would invoke a full copy of the re-
turned list, but instead, values are directly populated into the global list that is passed
by reference. Operators can be added as needed. For the sorted and Pareto eager im-
plementations, the comparators are set as needed. The co-optimal flag is only needed for
implementations that reduce the candidate space, such as the Pareto eager implementa-
tion. The rationale behind this is described in Section 5.2. Similarly, the block mode is
called as:

join marked(list with sublists, list of sublist markers [, operator [, operator [...]]]
[, flag keep co-optimals])

All current realizations of these functions are kept in the GAP-M library.

3.6.6 Backtracing

For the implementations of backtracing, the same basic modifications that were made for
forward mode computations apply, however, with two important exceptions.
Unfortunately, it is not possible to correctly deduct the candidate structure for generating
comparators or Pareto products with more than two dimensions out of the artificially
created backtracing product. Therefore, references to the original product structure have
to be passed through the structures together with a marker for the backtracing root that
is needed for sorted implementations.
The second exception is one done for optimization. In the most typical use case, when

33

3 INTEGRATION IN BELLMAN’S GAP

computing Pareto fronts under backtracing, usually only the Pareto front is created during
the forward phase, and candidate representations are added via a lexicographic product in
the backward phase. If the non-terminals are tabulated, the backward phase does not need
to repeat the expensive Pareto front computations, but can rather fish out the tabulated
candidates out of the whole search space, which is done automatically by the lexicographic
product. For the standard implementation, this rationale is already implemented. For the
generalized implementation this effectively yields a return to the standard implementation,
so that for tabulated non-terminals the specialized code generation is simply disabled while
backtracing.

3.6.7 Algebra Characteristics

Special attention should be given to possible algebra characteristics in the context of
Pareto and the generalized implementation. GAP-C performs a series of optimizations,
depending on the kind of algebra that was given, or more specifically, on how the choice
function is defined.

Definition 3.1 (Algebra Roles) An evaluation algebra A with choice function ϕA and
ϕA([]) = [] is:

• enumerative, if ϕA(X) =X

• set-valued, if ϕA(X) = set(X)

• selective, if ϕA(X) ⊆X

• synoptic, if ∣ϕA(X)∣ = 1 and ∄ ∶ ϕA(X) ⊈X

Within GAP-C, another level of differentiation is laid over this internally. Algebras can
be classified as:

• synoptic: if ϕA is synoptic

• kscoring : if ϕA is enumerative or selective and ∃X ∶ ∣ϕA(X)∣ > 1

• scoring : if ϕA is selective and ∣ϕA(X)∣ = 1

• pretty : if ϕA is enumerative

• classified : if ϕA is set-valued

Ideally, all underlying choice functions of a Pareto product are scoring, but the imple-
mentation can also handle kscoring and classified algebras. pretty is used for internal
optimization only. synoptic algebras will fail for Pareto products! The category of prod-
uct algebras depends both on the product as well as the underlying algebras. Unlike other
products, the category of a Pareto combination is always kscoring. This might conflict
with internal optimizations within GAP-C.
If the choice function of the root of the product tree is scoring, there is no need to keep
full candidate lists. Instead, the lists in all recursions will be replaced by a single vari-
able, and choice functions are applied at every step. This effectively constitutes a less
general modification of the ADP implementation than is created by the new generalized

34

3 INTEGRATION IN BELLMAN’S GAP

implementation. The operators ⊗,⊕ and # are modified as

l # ϕ = l (40)

l1⊕ l2 = ϕ([l1++l2]) (41)

⊗(f,X,Y) = foldr ϕ ++ [] [ϕ([f(x, y) ∣ x←X]) ∣ y ∈ Y] (42)

⊗(g,X) = ϕ([g(x) ∣ x←X]) (43)

h = ϕ(h), (44)

ϕ indicating a scoring choice function. Upon looking at the definition, the reader may ask
why this modification cannot be used as a basis of the generalized implementation. The
main reason is that this implementation, while seemingly complicated, only needs to mod-
ify the list append function and to disable calls to the original choice function. No deep
modification is needed. It should be fairly obvious, though, that the generalized imple-
mentation is not compatible with these changes, although it could be used to implement
just this.

For classified choice functions, another level of modification is added, recasting existing
list definitions to hashtables with filters [11, 6]. The full implementation is out of the
scope of this thesis and will not be fully discussed. However, it should be noted that
classification is, unfortunately, currently not supported for use with either the generalized
implementation or any use of Pareto products, unless the Pareto product is not a part
of the hash definitions. The reason for this is the hard setup of hashtables to only work
with k-best choice functions. Allowing solution sets of arbitrary length for each class –
as would be needed for Pareto products – is not within the scope of the current design.
Ultimately, to allow Pareto products within this optimization, a full reconstruction of the
hand-crafted current hashtable implementation in GAP-M would be needed. This was
not attempted so far, as it would likely invalidate all current classifying implementations,
such as those in the RNA shapes studio [17], as well as a number of handmade filters for
these. Classification can still be achieved for Pareto products without this optimization
when using the standard implementation.

For now, classified and choice function optimization are disabled for use with the general-
ized implementation.

3.7 GAP-M

No changes have been made to GAP-M other than to include files implementing marker
and append functions for all possible variations of sorted and Pareto eager ADP.

35

4 COMPUTING PARETO FRONTS

4 Computing Pareto Fronts

Recently, Saule and Giegerich identified a series of different algorithms to compute two-
dimensional Pareto fronts from unsorted or sorted candidate lists [13]. In their work,
Pareto front operators have been implemented and evaluated in Bellman’s GAP as filters
over the search space, which could only be defined for specific products only. All their
described algorithms have been re-implemented as fully functional algebra products prior
to this work. As they closely relate to new implementations, and will be used in the final
benchmarks, their definitions and features will again be presented. Saule and Giegerich
described all algorithms in a functional fashion, but as Bellman’s GAP currently operates
in an imperative setting, instead, pseudo-code is given that more closely resembles the
actual implementations.
Henceforth, we employ the following notation:

• ε is an empty list

• lpre:x:lsuf denotes an element in the middle of a list l = lpre:x:lsuf with lpre containing
all elements before x and lsuf containing all elements after x

• length(l) returns the number of elements in a list l

• ← indicates a term rewriting

• a < b means that b is better than a regarding the order of candidates (maximization)

Within the standard implementation of ADP, candidates are generated without any guar-
antees wrt. order. However, algorithms over sorted input lists can have favourable prop-
erties. We will categorize algorithms whether they take sorted or unsorted lists as input
and whether the Pareto front they produce is sorted or unsorted.

4.1 Two-Dimensional Products

Algorithm 4.1 pfnosort
INPUT: a) unsorted or b) sorted list input
OUTPUT: a) unsorted or b) sorted Pareto front in answers
answers← ε
for all inputpre:(u, v):inputsuf do

add← true
for all answerspre:(x, y):answerssuf do

if u ≥ x and v ≥ y then
answers← answerspre:answerssuf ▷ Remove

else if u ≤ x and v ≤ y then
add← false
break

if add then
answers← answers:(u, v) ▷ Add

Starting at the definition of Pareto front operators in Eq. 15, the most intuitive imple-
mentation of a Pareto front operator is a an all-against-all comparison of all elements of a
given input list. We call this method pfnosort. The implementation is shown in Alg. 4.1.
It is interesting to note that when using a sorted list as input, the resulting Pareto front
will itself be ordered again. The worst case complexity of this implementation is O(N2),
as is fairly obvious from the nested loops. One of the factors stems from the size of the
Pareto front that, in the worst case, is of size N . In the average case the size of the Pareto
front is H(N) ≈ log(N), so the algorithm performs in O(N log(N)) average runtime.

37

4 COMPUTING PARETO FRONTS

Algorithm 4.2 pflex
INPUT: sorted list input
OUTPUT: sorted Pareto front in answers
answers← ε
for all inputpre:(u, v):inputsuf do

if answers == ε then
answers← (u, v) ▷ Add
continue

answerspre:(x, y):ε
if v > y then

answers← answers:(u, v) ▷ Add

Algorithm 4.3 pfisort
INPUT: unsorted list input
OUTPUT: sorted Pareto front in answers
answers← ε
for all inputpre:(u, v):inputsuf do

add← true
erase← false
for all answerspre:(x, y):answerssuf do

if erase == false then
if (u == x and y ≥ v) or (x > u and y ≥ v) then

add← false
break

else if u > x or (x == u and y < v) then
add← false
erase← true
answers← answerspre:(u, v):(x, y):answerssuf ▷ Insert

else
if y > v then

break
else

answers← answerspre:answerssuf ▷ Remove

if add then
answers← answers:(u, v) ▷ Add

If the input list is already sorted, a linear algorithm can be applied to compute the Pareto
front. We call it pflex (Alg. 4.2). Saule and Giegerich showed that for two-dimensional
Pareto fronts, an increasing sorting of the first dimension results in a decreasing sorting of
the second [13]. To confirm this for oneself, the reason behind this is that in order not be
dominated by another element, if one dimension increases, the other must decrease. As
such, computing the front constitutes choosing all elements that are sorted according to
the second dimension, or, in other words, to remove all elements that are not sorted in
the second dimension. This can be easily done in a single pass over the input list, thus in
O(N). The sorting mechanism used to sort the input list will dominate the complexity
when using this operator.

It is interesting to also consider a joined algorithm of pfnosort and pflex. From an unsorted
list, a sorted front is generated by sorting them while computing the Pareto front (see
Alg. 4.3). We call it pfisort. It is executed in two phases. First, the correct position is
searched where the new candidate should be inserted. If the new candidate is dominated in
this phase, it can be directly rejected. After the candidate has been inserted, on the second
dimension now unsorted candidates are removed. Like with the unsorted implementation,
the worst case complexity of this implementation is O(N2), but O(N log(N)) average
complexity can be expected.

38

4 COMPUTING PARETO FRONTS

4.2 Three- and More-Dimensional Products

Algorithm 4.4 pfnosort multi-dimensional

INPUT: a) unsorted or b) sorted list input
OUTPUT: a) unsorted or b) sorted Pareto front in answers
answers← ε
for all inputpre:(u1, . . . , uk):inputsuf do

add← true
for all answerspre:(x1, . . . , xk):answerssuf do

if u1 ≥ x1 and . . . and uk ≥ xk then ▷ Lazy
answers← answerspre:answerssuf ▷ Remove

else if u1 ≤ x1 and . . . and uk ≤ xk then ▷ Lazy
add← false
break

if add then
answers← answers:(u1, . . . , uk) ▷ Add

From the two-dimensional, unsorted implementation, an almost equal multi-dimensional
case can be derived by adding all dimensions into the same conditionals as before (see
Alg. 4.4). The basic mechanics stay the same as before, however, the expected case gets
worse with each new dimension. As we recall, one of the factors of O(N2) stems from the
size of the Pareto front. For d > 2 the front size is expected as H(d)(N), where H(d) is the
generalized harmonic number and closely related to logd−1(N). Thus, the average case is
close to O(Nlogd−1(N)) in theory.

Algorithm 4.5 pflex multi-dimensional

INPUT: sorted list input
OUTPUT: sorted Pareto front in answers
answers← ε
for all inputpre:(u1, . . . , uk):inputsuf do

if answers == ε then
answers← (u1, . . . , uk) ▷ Add
continue

add← true
for all answerspre:(x1, . . . , xk):answerssuf do

if u2 ≤ x2 and . . . and uk ≤ xk then ▷ Lazy
add← false
break

if add then
answers← answers:(u1, . . . , uk) ▷ Add

For pflex the situation is more complicated, as there are no guarantees for ordering any-
more. Higher dimensions can break the ordering of lower ones, so that only the first
dimension is totally ordered after sorting the candidate set. Let’s take the list

[(10,5,5), (9,7,3), (8,3,7)]

as an example with maximization in all dimensions. It is clearly lexicographically sorted
and a Pareto front, however, neither the second nor the third dimensions are ordered. If we
now insert a new element (7,4,4) that, according to the sorting, follows after all elements
that are already in the front, it is no longer sufficient to only consider the last element of
the list anymore. We see that (8,3,7) does not dominate the new element because of the
second dimension. Similarly, (9,7,3) does not dominate it because of the third dimension.
Only (10,5,5) can reject (7,4,4). This means for each element to insert, the full front
needs to be tested, creating again an O(N2) algorithm (see Alg. 4.5). The expected case
is lower, however, by the same rationale as with pfnosort. In fact, both algorithms are

39

4 COMPUTING PARETO FRONTS

Y

X

Figure 3: Sketch of the domination in pfyuk. Arrows indicate possible domination between lists.
We have only one dimension of domination.

Algorithm 4.6 pfyuk

INPUT: unsorted or sorted list input, cut-off size c
OUTPUT: unsorted Pareto front

if length(input) ≤ c then ▷ Recursion End
sort input
return solve with pflex

else ▷ Recursion (Divide and Conquer)
split input in two sets X, Y such that Y is superior to X ▷ Divide
X ′
← pfyuk(X) ▷ Recursion

Y ′
← pfyuk(Y) ▷ Recursion

X ′′
←X ′ without first dimension

Y ′′
← Y ′ without first dimension

X ′′′
←marry(X ′′, Y ′′

)

return Y ′:X ′′′

now basically the same, with the only difference that in a sorted scenario, elements that
already are in the Pareto front can never be removed again and thus, this conditional is
missing. Also, the first dimension does not need to be compared anymore.

No attempt was made to transform the pfisort algorithm to make it suitable for higher
dimensions, as it no longer poses any advantage to pfnosort, for the same reason that in-
creased the complexity of pflex. Instead, a far more complex algorithm was implemented.
Following the work of Bentley and Yukish [29, 27], the Pareto front of any set can be com-
puted in guaranteed O(Nlogd−1(N)), employing a divide and conquer strategy. Because
the algorithm is very complicated and consists of multiple parts, only the basic idea will
be given instead of full pseudo-code.
The basic operation of this algorithm is relatively simple. When defining a median ele-
ment m of a list l, given an ordering induced by Pareto domination, all elements better
than m (we call them Y) can dominate elements worse than m (X), but not the other
way around. By comparing to m, we guarantee that every element of Y is better in at
least the first dimension than every element of X. We say that Y is superior to X. If
we compute the Pareto front individually for X and Y , we still need to remove elements
from X that are dominated by elements in Y as is shown in Fig. 3. This is done by the
marry step (Alg. 4.7). Since we already know that Y is better in the first dimension, we
can drop it for this task. The algorithm of Yukish and Bentley applies this separation step
recursively until all lists are smaller than a certain cut-off value. Lists below this value are
first sorted and then the Pareto front is computed with pflex; this is shown in Alg. 4.6.

40

4 COMPUTING PARETO FRONTS

X1

X2

Y1

Y2

Figure 4: Sketch of the domination in the marry step of pfyuk. Arrows indicate possible domi-
nation between lists.

Algorithm 4.7 marry

INPUT: unsorted Pareto fronts X and Y , Y superior to X, cut-off size c
OUTPUT: X without elements dominated from Y

if 2 dimensions then ▷ Recursion End 2
return solve with marry2D

else if length(X) ≤ c or length(Y) ≤ c then ▷ Recursion End 1
return solve with marrybrute

else
choose a cut plane to divide X to X1,X2 and Y to Y1, Y2

st. X1 superior X2, Y1 superior Y2, X1 superior Y2 ▷ Divide
X ′

1 ←marry(X1, Y1) ▷ Recursion 1
Y ′

2 ←marry(X2, Y2) ▷ Recursion 1
X ′′

2 ←X ′

2 without first dimension
Y ′′

1 ← Y1 without first dimension
X ′′′

2 ←marry(X ′′

2 , Y
′′

1) ▷ Recursion 2
return X ′

1:X ′′′

2

The marry algorithm is more complicated, as we no longer have to deal with separation
along one dimension, but rather along two dimensions. From the last step, we gain the
separation of the original list into Y and X. We now separate them again by a new median
into Y1, Y2 and X1,X2 respectively. It is important to use the same median for both lists,
as only then we can guarantee that X1 is superior to X2, Y1 is superior to Y2 and X1

superior to Y2. Fig. 4 demonstrates the layout of this scenario, with arrows indicating
which lists can dominate elements in each other list. X and Y are already Pareto fronts,
so they cannot contain dominating elements within themselves. It is important to note
that subsets of Pareto fronts are again a Pareto front, so this property always holds when
dividing lists to create smaller subproblems. The marry problem is divided along two
features.
First of all, the just described separation step creates sub-problems of smaller list lengths.
We now need to marry Y1 with X1 and Y2 with X2. This recursion ends when the lists are
below a certain cut-off, and a brute force marry algorithm that works similar to pfnosort
is called, just that only X is compared to Y . The full code is given in the appendix in
Alg. B.2.
Secondly, the elements of the list X2 can also be dominated by elements in Y1. Since X2

and Y1 are separated using the same median, we can again drop the first dimension before
marrying them. This recursion ends once we have reached a two-dimensional problem that
can be solved by employing a linear time algorithm that works by the same principles as

41

4 COMPUTING PARETO FRONTS

pflex. However, it operates on two Pareto fronts. This means elements in X can only be
dominated by elements in Y , so while moving through X, the last element of Y is always
kept as a reference. The pseudo-code is shown in the appendix as Alg. B.1.
The complexity of O(Nlogd−1(N)) can be intuitively explained by the recursive decom-
position of the problem along a median similar to Quicksort that is executed until only 2
dimensions remain, adding a factor of log(N) per dimension.

Only pfyuk was implemented fully as part of this work. pfnosort and pflex existed as test
cases for the rudimentary implementation of multi-dimensional Pareto definitions done
prior to this work, and were only optimized.

4.3 Optimization

Code optimization is a relatively straightforward process for all implementations except
pfyuk. The concepts creating the most slowdown are defined by the basic framework that
cannot be easily modified, leaving little room for improvement. The most problematic
feature of choice functions is that they must create a new list of candidates instead of
being able to modify the input or move elements of the old lists instead of copying them.
Each selected candidate is, therefore, duplicated in memory potentially multiple times
along the choice function tree. There is, however, no way to amend this problem. As
we already established before, lower choice functions only have access to references to
substructures of the overall candidate list. Calling a move instead of a copy on such
a substructure would therefore destroy the shared list, or at least constitute an unsafe
memory operation. The only way to fix this would be to copy all substructures before
passing them as arguments, which ultimately would cause a lot more copy operations. The
second reason is embedded within the definitions of algebra products, or more specifically,
the products of choice functions. Reducing candidates of the search space prematurely
will, in fact, break certain product definitions, like, for example, lexicographic products.
We will see later how this problem is handled for the Pareto eager implementation where
this problem actually arises (Section 5.2).
For the multi-dimensional versions of the algorithms, all comparisons are generated in a
way that emulates the lazy evaluation behaviour of binary expressions. If an action can
be rejected based on a lower dimension, the comparisons of higher dimensions will not be
executed. While this does not change the asymptotic runtime, it drastically reduces the
constant factor.
Although we can not easily change this behaviour, a few notes should be given about list
operations as well. In the pseudo-code, operations have been marked as Add, Remove, or
Insert. The theoretical complexities given in the last section are based on the fact that all
three operations can be executed in O(1). By the choice of deques (see Section 3.6.3) this
is not the case, causing Remove and Insert to behave in O(n), affecting the runtimes of
pfnosort and pfisort. Nevertheless, the use of deques was confirmed to be the best solution
prior to this work, even when including these operations.

For pfyuk, the situation is a lot more complicated as various competing implementation
strategies exists. A fair balance between maintainability and optimization has to be kept.
As the algorithm is very complicated, and fine structure changes are needed for optimiza-
tion, it is not created fully by the code generation process. Rather, it is implemented in
GAP-M, and only an interface call is generated for the choice function. Thus, one of the
bottlenecks of the implementation is the use of comparator functions. Lazy behaviour is
achieved by loops over all needed dimensions, comparing each dimension individually and

42

4 COMPUTING PARETO FRONTS

breaking the loop as early as possible. The compiler might optimize this code using loop
unrolling, but this creates (nested) branches and the problem of false branch predictions
remains. Loops will generally mispredict at least once on exit if not unrolled. Ultimately,
this problem cannot easily be resolved, especially not while implementing code for arbi-
trary dimensions. Duplicating and unrolling loops for all needed dimensional ranges via
pre-compiler macros seems within reach, but the benefits would likely not justify the effort,
as we would just create conditional jumps in other parts of the code instead. A full inlining
would necessarily require to unroll the full dimensional recursion, drastically increasing
the code size, which again would have negative effects on the overall speed. Accepting the
overhead of both loops and comparators seems to be reasonable in this context.
The two most pressing questions of the implementations are how to store candidate lists
and how to choose the optimal median for splitting lists. We will later also address the
optimal choice of the cut-off values for different applications. Currently, two versions of
pfyuk are implemented. In the reference based version, all intermediate lists consist of
pointers to elements of the candidate list. This means that while the memory footprint of
storage is low and we avoid copying potentially large elements, we first need to transform
the input to a pointer list, and in the end, transform the pointers back to a list of real
objects. Additionally, having to dereference a pointer at every step might have a negative
influence on core operations. Contrasting this, an implementation was realized where full
objects are kept in intermediate lists. Obviously, this creates costly copy operations on
potentially large objects, although some of the internal lists can make use of more effective
move operations when compiled with C++ 11 support.
Experimentally, a version of pfyuk was created that used the median of medians [1] ap-
proach to find a well suited median, then arranging the list regions by memory swaps
similar to Quicksort. We can partition the full input list until the cut-off is reached in
O(N log(N)). The practical implementation, however, turned out to be painfully slow
due to high constant factors induced by this method. For the same reason, usually the
median-of-three is recommended for Quicksort [30], using the median of the first, the mid-
dle, and the last element. This can be done in O(1) instead of O(N). However, such
a median has the potential to create strongly unbalanced splits as we have no guarantee
for optimality. As a compromise, we do the following: the lists are first fully sorted by
a Quicksort with median-of-three (and some optimizations proposed by Sedgewick [30]).
On a sorted list, all splits can be found perfectly balanced in O(log(N)) for any cut-off.
This implementation is further motivated by the fact that underlying algorithms like pflex
and marry2D also require sorted inputs, so sorting elements below the cut-off does not
go to waste in many cases. To avoid the comparator overhead on the first dimension, lists
are already passed sorted to pfyuk.
It is critical to avoid copying or moving list elements whenever possible. Most importantly,
this can be avoided for splitting up the candidates along the first dimension, as we can
keep the splits as index structures with access in O(1), in this case, C++ Iterators. The
candidates are first modified by pflex after the list regions are smaller than the cut-off.
Only then new additional lists are constructed, as we no longer can work on the immutable
input list. For the reference implementation, here, the reference lists are created and for
the copy version elements are just copied to new Pareto lists. Similarly, Y cannot be
modified during marry, and splits only need to be kept as indices.
The descriptions of both pfyuk and marry show a high level of recursion over different
categories, most of which can be avoided by using iterative implementations. This not
only serves to avoid the overhead generated by frequent function calls, but also improves
the locality of the program. We can, for example, first create all splits and only after that

43

4 COMPUTING PARETO FRONTS

apply pflex and marry them, improving the usage of the code-cache.

Aside of these changed, there are general-purpose optimization heuristics that can be
employed for pfyuk as well as any other function, most notable:

1. Whenever possible, objects are passed as references to avoid copying them.

2. Similarly, lists are never returned in a return statement, but rather, references are
passed as arguments.

3. Whenever possible, move is used instead of copy for list elements.

The second optimization is kept throughout all code generated by GAP-C, although less
visible. Copy operators will indeed be called on lists repeatedly, but as List Ref is just a
reference wrapper, only the reference will be copied, not the list itself.

44

5 ALGEBRA PRODUCTS AND THEIR INFLUENCE ON CANDIDATE LISTS

5 Algebra Products and their Influence on Candidate Lists

Up to this point in this work, some implicit assumptions have been made that can no
longer be upheld. So far, we have neglected to take the interactions between other algebra
products and Pareto products into account. In order for the Pareto operators to work
properly, other choice products in the product tree must not interfere with their defini-
tions. In the standard implementation of ADP, Pareto products are surprisingly hard to
break. None of the currently implemented products in the Bellman’s GAP system can
directly fault computations, aside from possible implementation issues with GAP-C. At
present, only custom user filters can easily interfere with the process.
The Pareto eager implementation of ADP, as well the lexicographically sorted implemen-
tation are a lot more sensitive in this regard. Various products can interact negatively
with their definitions. It is best to explain this problem in the terms of an expositional
example of one such case. A likely product a user may attempt to create would be one
such that A∗lex(B∗ParC), where A is an algebra partitioning the search space into classes,
and B,C are either minimizing or maximizing. A practical case of such a definition would
be, for example, to compute a Pareto front for each shape class of an RNA folding. We
need to pay special attention to the choice function definition of the lexicographic product
∗lex (Eq. 14) on what this means exactly. Both A and the Pareto product (B ∗Par C) are
kscoring (or classifying) in nature. The left part of the choice function definition, Eq. 14a,
creates a set of all possible values over the left choice function, here all possible classes.
The right side then creates subsets for each class, applying the right hand side choice
function to each set separately (Eq. 14b). As a result, we don’t compute just one global
Pareto front, but rather one individual front per class.

For now, let’s remain in the standard implementation and see why this is unproblematic
in this case. It is easy to see the unsorted implementations (pfnosort, pfisort, pfyuk) of the
Pareto front operator can handle this situation well as they can cope with every input.
Instead, let’s say we have the following list of candidates

[(a, (6,1)), (b, (5,2)), (a, (4,4)), (c, (3,5)), (a, (7,1)), (b, (4,3))] ,

with {a, b, c} ⊆ A, and B, C maximizing over elements in N.
If we want to use pflex in the standard implementation, we must first sort the list (Eq. 24).
Please remember that the sorting is done globally on the full candidate lists because of
restraints in the datastructures used to represent it. Modifications on this restriction might
be possible with additional intelligence during code generation in some instances, but we
should not be concerned with such details, as they only potentially influence efficiency of
the code, but not general functionality. Globally sorted, our example list turns to

[(a, (7,1)), (a, (6,1)), (b, (5,2)), (a, (4,4)), (b, (4,3)), (c, (3,5))] .

A global sorting also automatically sorts all possible subsets of elements in the list, there-
fore, when extracting candidates for each class, they are sorted as well, allowing pflex to
compute the correct Pareto fronts.

pflex([(a, (7,1)), (a, (6,1)), (a, (4,4))]) = [(a, (7,1)), (a, (4,4))]

pflex([(b, (5,2)), (b, (4,3))]) = [(b, (5,2)), (b, (4,3))]

pflex([(c, (3,5))]) = [(c, (3,5))]

45

5 ALGEBRA PRODUCTS AND THEIR INFLUENCE ON CANDIDATE LISTS

The results are added to the result list in order of the class and the Pareto operator output

[(a, (7,1)), (a, (4,4)), (b, (5,2)), (b, (4,3)), c, (3,5))] .

Before applying pflex the next time, the elements will be sorted again. This rigid switch
between sorting and “unsorting” of the candidate list might be ineffective, but is very
robust. The use of unsorted Pareto operators is still recommended.

5.1 Properties of Candidate Lists

It is now time to see how this affects the Pareto eager and sorted implementation by
extending the above example. Let’s say we want to merge the lists l1 and l2, consisting of
the same candidates as before, and they are the only two lists created by the non-terminal
before applying the choice function.

l1 = [(a, (6,1)), (b, (5,2)), (a, (4,4)), (c, (3,5))]

l2 = [(a, (7,1)), (b, (4,3))]

Both lists are sorted and Pareto fronts, assuming the initial conditions for the specialised
implementations are met, although this would constitute mere coincidence in reality.

Starting out with the sorted implementation, both lists can be merged without any prob-
lems, and we get the same sorted list as before.

[(a, (7,1)), (a, (6,1)), (b, (5,2)), (a, (4,4)), (b, (4,3)), (c, (3,5))]

The problem only arises when applying the choice function that, as already established,
separates and orders candidates by classes first and changes the candidate list. The result
is the same, as before, clearly unordered result list

[(a, (7,1)), (a, (4,4)), (b, (5,2)), (b, (4,3)), c, (3,5))] .

This violates the condition of intermediate lists having to be sorted as required by the
build ⊗ definitions.

Pareto merging the two sets would yield a combined Pareto front

[(a, (7,1)), (b, (5,2)), (a, (4,4)), (c, (3,5))] .

While keeping the Pareto condition intact, it is clear that this is not what we wanted to
compute.

One could argue that this is not really a problem, as within each class the properties of the
respective implementations are in fact conserved. Build ⊗ functions need to be created in
such a way that they can recognize their context.
Staying with the example product for the sorted implementation, we can keep the original
logic, but it needs to be extended in such a way that merge does not merge sorted lists, but
lists of sorted lists. Keeping the original definition of merge, one can change the definitions
such that we gain another level of foldr to merge the classes within each sublist.

⊗(f,X,Y) = foldr merge []

[foldr merge [] [f(x, y) ∣ x←X] ∣ y ∈ Y] (45)

⊗(g,X) = foldr merge [] [g(x) ∣ x←X] (46)

46

5 ALGEBRA PRODUCTS AND THEIR INFLUENCE ON CANDIDATE LISTS

Of course, one needs to be careful that the definition of select # is adjusted as well to
reflect this change. Alternatively, the application of the choice function could be moved
before the execution of each merge so that each class can be handled individually, posing
the question on how the actual choice function definition should be modified so no choice
function is executed twice.
For the Pareto eager implementation, we need to effectively reprocess sublists to call the
merge on every class individually, or in other words, we need to apply the ∗lex operator on
the sublists before executing the Pareto merge. In the broader context, this makes sense
as we move the application of the choice function to another position in the definition, so
we could move all other choice functions in the product tree at the same time.

While sounding well in theory, these changes are particularly hard to implement as they
mostly cannot draw on parts of the existing framework. Just taking the sorted implemen-
tation, the easiest solution to resolve this issue would be to sort the now unsorted sublists
before merging them. This, however, would practically invalidate the whole concept. In
a more complex solution, the introduction of the second layer of foldr merge could be
achieved by modifying the original ∗lex to include the merges or to alternatively pass a list
of split indices to the calling non-terminal to pass it down to the next build step. While
both could be realized within a conceivable amount of effort, they pose a very specific fix
for one specific implementation of ADP with one specific product.
Moving the lexicographic product ∗lex for execution before the merge or Pareto merge
respectively, as described above, would pose a more general solution. The original gen-
erators for the choice function tree could not be reused, however, as the operators now
execute different tasks. The standard definition of ∗lex only needs to deal with one solution
list. The new definition would need to be able to keep track of two or more solution lists
– one for each class – that need to be processed in parallel. At the same time, the product
must ensure class sets are correctly joined. Even more complicated, the question remains
when to execute potential other products of the tree.

Most sensibly, this case of classified products should be realized by a full reconstruction of
hashtables, combined with an optimized and fitted in implementation of the generalized
interface, bridging the gap to Section 3.6.7. Such a construct could even be used to treat
each class as an individual solution list, avoiding conflicts such as above to a large degree.
Leaving aside the possible implementation details of our example case again, it is time to
finally return to the general problem raised in this section.

The example was chosen to highlight the high complexity of interaction between product
definitions. Even for such a seemingly simple product, multiple conflicting implementation
strategies arise, and the question of how a generalized handling strategy within ADP
should be implemented remains problematic. It is time to remind us that other such
products can be defined, the most obvious being the combination of multiple Pareto fronts.
Before investing much work in potentially unneeded features, it is wise to concentrate
implementations to the most common use cases of Pareto optimization, which is computing
a Pareto front combined with printing out the candidates in the front. More formally, we
want to analyse products of the form

∗Par{A1, . . . ,Ak} ∗lex B1 . . . ∗lex Bl, (47)

joining a k-ary Pareto product with an arbitrary number of lexicographic products. This
product conserves the properties of sorted and Pareto eager ADP. For the sorted imple-
mentation, the choice functions are generated unchanged to the standard implementation,
so all other products will still be accepted, although the burden of correctness lies with

47

5 ALGEBRA PRODUCTS AND THEIR INFLUENCE ON CANDIDATE LISTS

the user. It is not as easy for the Pareto eager implementation, as we will see in the next
section.

5.2 Candidate Reduction and Products

For the generalized implementation, the question arises of how and when the choice func-
tions are applied to the candidate list. We could already see in the last section that there
is likely no universal solution to this. Instead, in this section, we want to explore the dif-
ficulties that arise with the Pareto eager implementation. From the definitions in Section
2.3.2, we have to examine the select # (Eq. 30) and the build ⊗ and combine ⊕ steps
(Eqs. 31 and 32) in particular. The basic idea of the Pareto eager implementation is to
move the application of the Pareto front operator from the select # to the build ⊗ step.
The question remains of what happens to all other choice functions in the tree.
The first intuition is that only the Pareto operator is moved, while all other choice func-
tions remaining in the select step. This would mean we can generate the choice function
tree as before, just changing the Pareto operator to the identity function in the chain. To
see why this will not always work, we need to remind ourselves that the right hand side
algebra of a lexicographic product can either just return one candidate per front element
or possibly more (co-optimals). Let’s regard a possible list of candidates for the prod-
uct (A ∗Par B) ∗lex C, where C is an algebra printing candidate representations and A,B
are maximizing. Let’s assume we have a candidate list as follows produced as the only
elements before the choice function:

[((2,1), a), ((1,2), b), ((1,2), c), ((2,0), d)] .

In the standard implementation, the full list is passed to the choice function of the lexico-
graphic product. The list will be broken down to only the left element of each tuple and
passed to the Pareto operator, which will return the list

[(2,1), (1,2)] .

The lexicographic product then maps back to the full candidate list and returns

[((2,1), a), ((1,2), b), ((1,2), c)] .

By the way of this example, we can see that co-optimals are retained in the lexicographic
product, after seemingly being eliminated by the Pareto operator. This differentiation is
important when repeating this example for the Pareto eager implementation.
We join two Pareto fronts consisting of the same elements as before.

l1 = [((2,1), a), ((1,2), b)]

l2 = [((1,2), c), ((2,0), d)]

Following the definition of Pareto of Eq. 15, the merge will eliminate all co-optimals. So
we have two possible results, but we will just stick to one.

[((2,1), a), ((1,2), b)]

We see that the candidate ((1,2), c) has been removed, although it should be part of the
final result. Applying the choice function of the lexicographic product cannot return the
element, as it no longer exists in the list to process.

48

5 ALGEBRA PRODUCTS AND THEIR INFLUENCE ON CANDIDATE LISTS

Two general solutions exist for this problem. To emulate the behaviour of the standard
implementation, we can keep two separate candidate lists, one computing the Pareto list
on the run, the other collecting all candidates as before. The choice function then takes
both lists as arguments. There is nothing inherently wrong with this technique. However,
the idea of Pareto eager ADP relies on reducing the size of candidate lists as early as
possible. In the worst case doubling the effort of keeping candidate lists seems to be
counterproductive.
As an alternative, all choice functions can be moved to ⊗ and ⊕ to be applied at the
same time as the Pareto front operator. This method, however, is potentially dangerous
for performance. The lexicographic operator performs in O(N2), higher than the cost of
merging Pareto fronts in two dimensions. So, instead of paying this cost once at the end
of each non-terminal, we move it to the innermost loop of each alternative production. In
other words, we create costs with a higher complexity for each merge.

For the lexicographic product, a third alternative exists, where we combine the lexico-
graphic product with the Pareto product to one single function. This can be done at no
costs at all. We only need to redefine the Pareto operator so that it retains co-optimals.

Definition 5.1 (Co-optimal retaining Pareto front operator) We define D and E with
relations >D,>E as before. A Pareto front operator that allows co-optimal front elements
is then defined as

pfc>D,>E(X) = {(d, e) ∈X ∣ /∃ (d′, e′) ∈X ∖ {d, e} with

d ≤D d′, e <E e
′ or d <D d′, e ≤E e

′
}. (48)

Like before, we will drop all information about arity or ordering for the rest of this work
and use a more general pfc where clear. This change can be easily included into all Pareto
front operators defined in the last section as we will see in Section 7.

Theorem 5.1 (pfc is a combination of pf and ∗lex) Given algebras A1,A2 with minimiz-
ing or maximizing choice functions and B with ϕB(X) = X as choice function, then the
choice function of the product (A1 ∗Par A2) ∗lex B can be computed as

ϕ(A1∗ParA2)∗lexB[((a1,1, a2,1), b1), . . . , ((a1,m, a2,m), bm)] =

pfc[((a1,1, a2,1), b1), . . . , ((a1,m, a2,m), bm)]. (49)

Proof. We only give a sketch of the proof. We define ai ∶= (a1,i, a2,i). The choice function
then results to

ϕ(A1∗ParA2)∗lexB[((a1,1, a2,1), b1), . . . , ((a1,m, a2,m), bm)]

= [(l, r) ∣

l ∈ pf[a1, . . . , am],

r ← [r′∣(l′, r′)← [(a1, b1), . . . , (am, bm)], l′ = l]]

We need to show that the correct values for r are chosen in the last part of the equation.
“⇒”:
Per definition of pf and pfc we know

pfc ∖ pf = [(ax1 , b
x
1), . . . , (a

x
n, b

x
n)] st. ∀(axi , b

x
i)∃(a

y, by) ∈ pf with ay = axi

So for each (axi , b
x
i) an ay = l exists such that bxi is chosen.

49

5 ALGEBRA PRODUCTS AND THEIR INFLUENCE ON CANDIDATE LISTS

“⇐”:
If l ∈ pf then also l ∈ pfc. Per definition pfc keeps all elements
(l′, r′)← [(a1, b1), . . . , (am, bm)] where l = l′ as equal elements cannot dominate.

Using Theorem 3.1, the theorem can be extended to multi-dimensional Pareto definitions.

The actual implementation is twofold. So far, we have omitted backtracing from the
discussion. Ideally, with backtracing, our example product will be split up into a forward
phase computing (A∗ParB) and a backtracing phase computing (A∗ParB)∗lexC. In Tab. 1
all possible combinations of options are given. With backtracing, the forward computation
does not incorporate any other products, so the standard Pareto front operator definition
can be used. In the backward phase, we then need to differentiate between tabulated and
untabulated non-terminals. For untabulated cases, we need to recompute the Pareto front,
and will therefore rely on the co-optimal retaining Pareto front operator. For the tabulated
case, we already have the front, so we should not recompute it, and can instead directly
apply the choice function with the tabulated values. This leaves somewhat of a pragmatic
after-taste, as for sorted two-dimensional Pareto products, we can compute the Pareto
front and implicitly the lexicographic product without changing the complexity compared
to simply listing all candidates, while the lexicographic product takes O(N2). List sizes
are always kept as small as possible using pfc. However, Pareto products bring in a large
factor for each merge, compared to a single application of the choice function. There is
also further merit for using the choice function than potential speed. In a way, this realises
the first general solution of above – where we keep the Pareto front, and a candidate list
in parallel – with the additional benefit of backtracing, thus without duplicated candidate
lists in comparison to the standard implementation. Should the need arise to use Pareto
eager ADP with a combination other than the lexicographic product, this can be done by
tabulating all non-terminals.

co-opt no co-opt co-opt, backtr. no co-opt, backtr.

forward pfc pf pf pf
backward tabulated - - ∗lex ∗lex

backward untabulated - - pfc pf

Table 1: Overview of options and generated operators for Pareto eager ADP. If backtracing
(backtr.) is not defined, co-optimal (co-opt) candidates are handled in the forward computation.
With backtracing, co-optimals only have to be considered in the backward phase. If the results
of the forward phase were tabulated, the Pareto front is not recomputed, but the normal choice
function is called using the tabulated front.

50

6 LEXICOGRAPHICALLY SORTED ADP

6 Lexicographically Sorted ADP

Now that we have defined all theoretical, and some practical, components needed for the
implementation of lexicographically sorted ADP, it is time to combine them and fill in the
missing parts.
In Section 2.3, we have seen two different strategies to create sorted lists. In Section 4, we
have seen the definition of pflex that expects and produces sorted lists and can, therefore,
find use as a choice function in Eq. 24 or 25.
What is left for us to analyse are different implementations of sorting algorithms, corre-
sponding either to sort in Eq. 24, or merge in Eqs. 26, and 27.
It is interesting to note that also pfnosort can be used with all sorted implementations, as
it keeps the sorting intact, but there is no practical benefit for doing this. While pfyuk
would benefit greatly from an already sorted input list, it is virtually incompatible with
the the sorted implementation of ADP, as it produces unsorted Pareto fronts.

Pareto and sorting operations on lists of intermediate results in a dynamic programming
setting are executed for each entry of the dynamic programming matrix (or matrices) and
in the innermost loops of the algorithm. Careful attention needs to be placed not only on
the asymptotics of each algorithm in order to create good code, but also other properties
such as memory usage and constant factors in the implementation.

6.1 Sorting Algorithms

Sorting algorithms are traditionally classified along different criteria. Next to runtime
complexity, the memory usage of the algorithms is very important in the context of dy-
namic programming. An algorithm can either operate in place, taking O(log(N)) or less
in additional memory, while algorithms that are not in place need worst case O(N) mem-
ory or more. Here, we also introduce a third category of algorithms that will not move
around elements that are already sorted, but technically are not in place, contrasting with
implementations that will copy or move every element once regardless of position. Another
interesting aspect is the adaptiveness, as even non-adaptive algorithms can show adaptive
behaviour. Most of the following algorithms are adaptive in the sense that they work on
already known sorted sublists. Other factors, such as stability, are not important for this
work and will therefore not be discussed.

S1 Quicksort: If nothing is known about the content of the list, Quicksort is widely
recognized to be one of the fastest algorithms for comparison based sorting. The C++

STL library (the definitions of GNU were used) contains an implementation of Quicksort
with a cut-off and Insertion sort for smaller problems as proposed by Sedgewick [30].
Median-of-three is used to find cut elements. It can be considered to run in place with an
average runtime complexity of O(N log(N)), while the worst case is O(N2). Empirically,
Quicksort can be shown to be adaptive to pre-sorted sublists [31], shortening computation
times with increasing numbers of elements that are not inverted, hence are already in
the right order relative to each other. For ease of use, this property will be addressed as
sortedness for the rest of this thesis.

It is important to note that while we might not know where the sorted sublists are in the
standard implementations of ADP, when using a Pareto front operator that creates sorted
lists, the candidate list will still contain pre-sorted areas. As such, Quicksort is a very

51

6 LEXICOGRAPHICALLY SORTED ADP

good candidate for sort in Eq. 24 and sets a fast reference for all other implementations.
It is also suitable for the use in Eq. 29.

In the lexicographically sorted implementations of ADP, already sorted sublists are known
within the overall lists. Depending on the mode of Eq. 27 (see Sections 3.4.1 and 3.4.2)
sorted lists are handled differently. Ignoring all other properties of both modes for a
moment, the difference for the merge algorithms is how many sublists can be merged at
once. All implementations that support the block mode automatically are suitable for the
step mode, but not vice versa. Effectively, the same implementations could be used for
both modes, potentially removing the overhead for the step mode in some cases.
In this work, however, the step mode will not be supported for the use with sorted ADP.
In Section 3.4.1, the inferior complexity for merging more than two lists compared to the
block mode was already addressed. This behaviour can only be justified if the successive
application of a function is advantageous to first collecting all elements. Arguably, this can
be the case when the append function reduces the number of elements during execution,
thus preventing lists from growing large early on. Sorting, however, is only a reordering of
candidates that does not modify any other properties of the candidate lists. Neither space
nor memory operations can be saved. The only conceivable advantage of the step mode
in this case is that no index structures need to be kept to keep track of sorted sublists.
When the number of sorted sublists is small, index lists are easy to keep and cost near to
no additional effort. It is only when the number of sublists comes close to the number of
elements in the candidate list that they become a noticeable factor. However it is exactly
this case that is also the most problematic for the step mode, the bad complexity having
the most effect. Preliminary tests on step-wise sorting confirmed this in practice, even on
very small testsets, increasing computation times by a large factor.

Following this, we will only regard the more general case defined by the block mode,
where we define N to be the total number of all elements over all sorted sublists and M
the number of sublists that have to be merged. Merging two sublists of length l1 and l2
results in a sorted list of length l = l1 + l2, w.l.o.g. l1 ≤ l2.

S2 List-Join: The most intuitive algorithm to merge M sorted lists is to iteratively build
a new list, for each element testing which element of the M sublists needs to be added
next. This gives a trivial complexity of a guaranteed runtime of O(N ⋅M) and space
complexity of O(N). Disregarding initial position, every element needs to be moved to
the new list during the merge.
S3 Queue-Join: The behaviour of List-Join can be improved by using a sorted queue to
find the next element to be added. Inserting into a sorted container has a complexity
of O(log(M)), effectively reducing the complexity of the whole merge to O(N log(M)),
while the space complexity remains unchanged.
S4 In-Join: The In-Join algorithm was developed to reduce the number of elements that
have to be moved in memory during the merge. Its basic functionality is the same as
List-Join, but each element is written directly to the correct position of the input list if
necessary, otherwise, it is left untouched. This, however, creates the need for a temporary
element queue of displaced candidates. Even worse, elements do not need to be inserted to
the queue in order, as can be seen in step 4 in the example in Fig. 5. This adds a factor of
O(log(N)) to some operations, creating a worst case runtime of O(N ⋅M ⋅ log(N)) while
space complexity remains at O(N). Pseudo-code for a full implementation can be found
in the appendix as Alg. B.3.

52

6 LEXICOGRAPHICALLY SORTED ADP

Step List Queue

1 3 4
↑

∣ 1
↑

∣ 0 2 5̇
↑

ε

2 3 4
↑

∣ 1
↑

∣ 0 2̇
↑

5 ε

3 3
↑

∣ 1
↑

∣ 0̇
↑

4 5 2

4 ∣ 1̇
↑

∣ 3 4 5 2,0

5 ∣ 2̇
↑

∣ 3 4 5 1,0

6 1 ∣ 2 ∣ 3 4 5 0
7 0 1 ∣ 2 ∣ 3 4 5 ε

Figure 5: Short example of sorting a list with three sublists using the S4 In-Join algorithm. A
dot ẋ indicates the current element to sort. ↑ shows current ends of sublists to consider for sorting.
Step 1: 5 is left untouched because it is already sorted. Step 2: 4 is worst element, so 2 is displaced
to queue. Step 3: 0 is displaced to queue. First list is now exhausted. Step 4: 2 from queue is the
worst and 1 is displaced. Adding 1 to end of queue would create faulty order, so sorted insert is
needed. Step 5-6: Write queue to current element. Step 7: Sorting finished.

Instead of joining all sublists at the same time, a two way mergesort can be utilized, the
used merge step for two lists characterizing the process.
S5 Merge A: A merge can be achieved in guaranteed l comparisons and maximally l swaps
(2l moves) if additional space is available. Merge A starts at the right-most (worst) el-
ements of both sublists. At each step, the biggest (worst) current element is written to
the current index of the right sublist. If the right element was already the worst, noth-
ing happens, otherwise the element is displaced to a temporary queue. This element is
guaranteed to be bigger or equal than the next element of the right list, and elements
are inserted in order (by the fact that the right list is sorted). Hence, if elements in the
temporary list are present, only one comparison between the current element of the left
list and the next of the queue is needed. In the worst case, the queue gets as long as the
smaller of both sublists. Although this algorithm is not in place, it tries to minimize both
the size of additional memory as well as memory operations. Due to the linear merge, the
whole sorting process has a complexity of O(N log(M)). An example of a sorting process
using Merge A is shown in Fig. 6. Pseudo-code is given in the appendix in Alg. B.4.
S6 Merge B: The previous algorithm can be extended to move all elements, from the right
list, smaller than the first elements of the left list in a consecutive block. This trades in
additional comparisons in the hope of gaining a speed-up from the more efficient memory
operation. The complexities remain unchanged.
S7 Merge In-Place: Finally, the merge of two sorted lists can be done in place. The
C++ STL package defines a function inplace merge that defines two sub-algorithms called
depending on the availability of an additional (constant) amount of memory. Both algo-
rithms are based on Recmerge of Dudzinski and Dydek [32] that recursively reduces the
size problem using rotations around central elements. If additional memory is available,
it is used as a temporal storage to sort elements in blocks for smaller subproblems, reduc-
ing the complexity from O(l1log(l2/l1 + 1)) comparisons and O((l1 + l2) log(l1)) swaps to
a linear behaviour. The whole sort takes O(N log(N) log(M)) or O(N log(M)), respec-
tively. We can assume for the experiments that the fastest case is called almost all the time.

53

6 LEXICOGRAPHICALLY SORTED ADP

Step List Queue

1 2 6 8 9
↑

∣ 3 4 5 7̇ ε

2 2 6 8
↑

7 ∣ 3 4 5̇ 9 7

3 2 6
↑

5 7 ∣ 3 4̇ 8 9 7,5

4 2 6
↑

5 4 ∣ 3̇ 7 8 9 5,4

5 2
↑

3 5 4̇ ∣ 6 7 8 9 5,4,3

6 2
↑

3 5̇ 5 ∣ 6 7 8 9 4,3

7 2
↑

3̇ 4 5 ∣ 6 7 8 9 3

8 2
↑

3 4 5 ∣ 6 7 8 9 ε

Figure 6: Short example of merging two list with Merge A. A dot ẋ indicates the current element
to sort. ↑ shows the rightmost element of the left list to sort. Circled elements x show which
element was sent to the queue by freeing this position. Step 1: 9 is worse than 7, so 7 is displaced
to queue. Step 2: 8 is worse than first element of the queue 7, so 5 is displaced. Step 3: First
element of queue 7 is worse than 6, so 7 from queue displaces 4. Step 4: 6 is worse than 5, so 3
is displaced to queue. Step 5-7: Empty queue. Step 8: Sorted, because right list is processed and
queue is empty.

6.2 Optimization

The degree of optimization needed in order to perform well varies greatly between algo-
rithms. All implementations are implemented as part of the GAP-M library or the C++

STL library. As such, they are called over templated interfaces and employ comparator
objects for comparisons. No comparator calls for individual dimensions are needed, but
rather all dimensions are tested in a single function, comparing higher dimensions only if
needed.
As a general rule, sorting can only be done on the highest level of candidate lists. This
means, for the normal implementation, the sorting is applied before the top-most choice
function. In the generalized implementations, the candidate list itself is directly modified
in non-terminal recursions. It is this fact that allows the usage of in place algorithms in
the first place. As a welcome side effect, if a C++ 11 compatible compiler is available,
we can use the move function over the more expensive copy operation. This change is
automatically detected and employed by all of the above algorithms. The output of all
algorithms is returned in the pointer of the input list that is passed as reference, although
the returned list is not necessarily the same. This avoids the application of the copy
operator as would be the case by using a return statement.

Algorithms S1 and S7, as part of the GNU C++ STL package, can already be regarded as
fully optimized. The formulations for S2 and S3 do not leave much room for improvement.
S2 does not keep track of exhausted sublists to avoid costly lists constructions and element
modifications that are likely not needed most of the time. For the sorted queue in S3 a
vector is used as recommended by the library. A vector can be seen as a consecutive
array in RAM with higher end functionality. Vectors are considered to be very fast when
operating on small elements, in this case, integer-sized indices. The number of sublists is
known, so memory for all is reserved before initially filling it.

The sorted queue of S4 is set up the same way. The rest of the implementation is straight-
forward: find the worst element on all sublist ends, send the current element to queue if

54

6 LEXICOGRAPHICALLY SORTED ADP

needed, and write the worst element to the current index.

For S5 and S6, an observant reader may ask why the implementation cannot be done fully
in place, in other words, keeping the queue within the original elements of the list. After
all, each time an element is displaced to the queue, another position within the list is freed.
Even more so, elements are displaced in order as the sublists are sorted, and freed regions
are guaranteed to be connected. A problem only arises when elements from the queue
displace new elements. In a free queue implementation, the first element can be removed,
and a new element be added in O(1). In Fig. 6, an example of a sorting with Merge A
is shown, also indicating which positions were freed when displacing candidates. In step
4, the queue order is inverted, meaning the queue is no longer read from right to left,
but now from left to right. In step 5, we completely lose order within the queue. Longer
examples that fragment the queue area even more can be easily constructed. Following
this rationale, while the algorithm can be made in place, it would cost a factor of O(l) –
for shifting all existing queue elements to the right when an element is removed from the
queue – to keep the queue sorted.
Instead of implementing a single loop containing all intelligence, S5 and S6 were broken
down to several smaller loops. This is done to minimize faulty branch predictions for
repeated branches within the main loop. Spreading the logic over multiple loops reduces
the need for branching within each loop to a minimum, although some code is duplicated.

55

7 PARETO EAGER ADP

7 Pareto eager ADP

Unlike with the sorted implementation, we are still missing essential parts of the definitions
of Pareto eager ADP. As the nullary function, every definition from Section 4 can be used
(see Eq. 34). Co-optimals are retained by the product tree if defined and needed (see
Section 5.2). The choice function is set up as the identity (Eq. 30) regardless of defined
products in forward mode, or is generated without change to the standard implementation
for tabulated non-terminal functions. Most complicated is the implementation of the
Pareto merge operation

p

∨ for Eqs. 31 and 32. Saule and Giegerich identified an algorithm
for

p

∨ that can join sorted Pareto fronts for two dimensions in O(N) [13], but left open
practical issues and possible alternative implementations for higher dimensions.

The biggest concern is that we need two definitions of
p

∨, one that merges by the definition
of pf and one by the definition of pfc. This difference has not been addressed in any work
so far.

There are more issues we need to address before introducing different algorithms that can
solve both versions, however.

7.1 Floating Point Operations and Pareto Front Inaccuracies

In Section 2.3.2, we saw the definition of the build ⊗ steps in Eqs. 32 and 33. One of the
key properties of the build phase is that applying an algebra function to a Pareto front will
again result in a Pareto front, as all such functions are required to be strictly monotone
[13]. The proof of correctness for individual definitions is left to the user by the Bellman’s
GAP system. In Section 3.6.4, we already discussed the problem of unsafe floating point
operations as a general issue. We will now see how this can be critical for Pareto eager
implementations.
Let’s assume we have two values representing the for this example arbitrarily chosen
number 1.04. Due to floating point inaccuracies, they are represented as, say 1.04 and
1.039, hence posing different values for a full comparison. Let’s say we are maximizing
over a two-dimensional Pareto front, and the two values are paired with other values as
follows:

[(1.04,2), (1.039,3)] .

If both values were the same – as they should be ideally – the Pareto front would only
keep one element. However, due to the inaccuracies, both elements will be kept. For the
standard implementation and the sorted implementation, this behaviour does not pose
a massive problem, as they have a self-correcting tendency. More formally, all elements
are considered for computing the Pareto front every time, so if an element is retained for
one front and the accuracy error is (by chance) amended later, the element will still be
removed. So if a function shows behaviour that is not strictly monotone – for our example,
the 1.039 value catching up to the 1.04 one – the standard and the sorted implementation
will amend for that. For the sorted case, this is less obvious, as technically the sorting
might be invalidated by rounding errors. But since elements are technically the same, they
remain sorted on an abstract level.

The Pareto eager implementation does not always have this property. Since the Pareto
merge operates on the knowledge of existing fronts, fronts don’t need to be re-evaluated
by the elements in them. So for the example above, once the two elements are in a front,

57

7 PARETO EAGER ADP

they will not leave it except if elements from another front dominate them. So, if the strict
monotonicity is violated, the faulty elements will remain in the front.

There is a relatively simple, but yet not completely safe, solution for this: restricting
comparisons to act only within a certain level of accuracy that has to be chosen to be
greater than the level of floating point accuracy. This choice is left to the user who can
define it using the parameter introduced in Section 3.6.4.

7.2 Pareto Merge Algorithms

All algorithms of this section can be modelled after Pareto operators defined in Section 4.
Accordingly, they can be defined with varying arities in mind and work on sorted or
unsorted Pareto fronts. Algorithms are designed in a way that they can compute the
Pareto front according to pf and pfc depending on a binary switch.

Algorithm 7.1 drop for
p

∨lex

INPUT: compare element e, index to advance it, list l,
binary variable coopt (true: keep co-optimals)

OUTPUT: modified it
(−, x2)← e
(−, y2)← l[it]
if coopt == true then ▷ Coopt

while x2 > y2 and it < length(l) do ▷ Compare Dim. 2
it← it + 1
(−, y2)← l[it]

else
while x2 ≥ y2 and it < length(l) do ▷ Compare Dim. 2

it← it + 1
(−, y2)← l[it]

return it

We will start with an algorithm inspired by the two-dimensional definition of pflex that
can join sorted Pareto fronts. Its basic properties and definition were described by Saule
and Giegerich [13]. To better highlight implementation details, we will use index based
list access in the pseudo-code:

• l[i] accesses the i’th element of a list l, starting at index 0

We split up the definition of
p

∨lex in two functions, Algs. 7.1 and 7.2. While the definition
as pseudo-code is relatively lengthy, the basic idea is easy to describe. We keep markers
on both lists indicating which elements have to be merged next. On each iteration, the
two next elements are compared to find which one needs to be added next (on the first
dimension), at the same time ensuring order on the second dimension. The nested cases
cover all combinations of comparisons for two dimensions. The drop subfunction iterates
over elements that are unsorted in the second dimension. In order to retain co-optimals,
only minor changes needed to be made. When we merge two lists of length l1 and l2, the
complexity of this algorithm is clearly O(l1 + l2). In the block mode, we have to merge
M sublists at once, which can be done utilizing a two way merge. In this case we gain a
runtime of O(N log(M)).

As with pflex, the good complexity cannot be kept for higher-dimensional merges, but we
can reuse the multidimensional definition the same way as for the two-dimensional case,
merging two sorted lists and computing the Pareto front at the same time. Unlike for
the two-dimensional case, the similarity is easy to highlight like in Alg. 7.3. Grey areas

58

7 PARETO EAGER ADP

Algorithm 7.2
p

∨lex

INPUT: sorted Pareto fronts l1 and l2,
binary variable coopt (true: keep co-optimals)

OUTPUT: sorted Pareto front in answers
it1 ← 0
it2 ← 0
answers← ε
while true do

if it2 == length(l2) then ▷ End 1
write rest of l1 to answers
return

if it1 == length(l1) then ▷ End 2
write rest of l2 to answers
return

(x1, x2)← l1[it1]
(y1, y2)← l2[it2]
switch compare x1, y1 do ▷ Compare Dim. 1

case x1 < y1
switch compare x2, y2 do ▷ Compare Dim. 2

case x2 < y2
it1 ← it1 + 1
it1 ← drop l2[it2], it1, l1, coopt

case x2 == y2
it1 ← it1 + 1

answers← answers ∶ (y1, y2) ▷ Add
it2 ← it2 + 1

case x1 == y1
switch compare x2, y2 do ▷ Compare Dim. 2

case x2 < y2
it1 ← it1 + 1
it1 ← drop l2[it2], it1, l1, coopt
answers← answers ∶ (y1, y2) ▷ Add
it2 ← it2 + 1

case x2 == y2
answers← answers ∶ (x1, x2) ▷ Add
if coopt == true then ▷ Coopt

answers← answers ∶ (y1, y2) ▷ Add

it1 ← it1 + 1
it2 ← it2 + 1

case x2 > y2
it2 ← it2 + 1
it2 ← drop l1[it1], it2, l2, coopt
answers← answers ∶ (x1, x2) ▷ Add
it1 ← it1 + 1

case x1 > y1
switch compare x2, y2 do ▷ Compare Dim. 2

case x2 == y2
it2 ← it2 + 1

case x2 > y2
it2 ← it2 + 1
it2 ← drop l1[it1], it2, l2, coopt

answers← answers ∶ (x1, x2) ▷ Add
it1 ← it1 + 1

59

7 PARETO EAGER ADP

Algorithm 7.3
p

∨lex multi-dimensional

INPUT: sorted Pareto fronts l1 and l2,
binary variable coopt (true: keep co-optimals)

OUTPUT: sorted Pareto front in answers
answers← ε
it1 ← 0
it2 ← 0
while it1 < length(l1) or it2 < length(l2) do

if it1 < length(l2) then
(x1, . . . , xk)← l1[it1]

if it2 < length(l2) then
(y1, . . . , xk)← l2[it2]

if it2 == length(l2) or (it1 ≠ length(l1) and (

y1 < x1 or (y1 == x1 and y2 < x2) or . . . or
(y1 == x1 and . . . and yk−1 == xk−1 and yk < xk))) then ▷ Lazy

(u1, . . . , uk)← l1[it1]
it1 ← it1 + 1

else
(u1, . . . , uk)← l2[it2]
it2 ← it2 + 1

if answers == ε then
answers← (u1, . . . , uk) ▷ Add
continue

if coopt == true then ▷ Coopt
answerspre:(t1, . . . , tk):ε
if t1 == u1 and . . . and tk == xk then ▷ Lazy

answers← answers:(u1, . . . , uk) ▷ Add
continue

add← true
for all answerspre:(z1, . . . , zk):answerssuf do

if u2 ≤ z2 and . . . and uk ≤ zk then ▷ Lazy
add← false
break

if add then
answers← answers:(u1, . . . , uk) ▷ Add

remain unchanged. Blue areas were modified from the original implementation to allow
the algorithm to work on two inputs. Instead of iterating over one sorted list, we now
iterate over two sorted fronts. So at each step, we need to test which element comes next
in the sorting. Once this element is established, the algorithm continues as before. The
test for co-optimals can be done in O(1), as, due to the sorting, all equal elements follow
each other and only the last element of the answers front has to be checked. Overall,
complexity is O(l ⋅ l). For block mode, applications can be arranged in a two way merge
like before, exhibiting a complexity of O(N2) by Master’s theorem. The influence of M
is subsumed by the influence of N .

The modification of pfnosort is an especially interesting case of the Pareto eager imple-
mentations. All other implementations require to create new answer lists containing the
Pareto front.

p

∨nosort in Alg. 7.4 allows us to work directly on the input lists. Since both
inputs are already Pareto fronts, we can declare the longer one to be the answers list, and
insert the candidates of the second front into it. In other words, we compare all elements
of one list to all elements of the other, making changes to the first list accordingly. Again,
grey areas remain unchanged and blue areas were modified. The biggest problem is to
handle co-optimals effectively. To avoid calling a comparison twice, the original branching
has been modified so that all dimensions are tested in one loop, marking properties to new
variables as they occur. This procedure was set up in a way that comparisons are stopped

60

7 PARETO EAGER ADP

Algorithm 7.4
p

∨nosort all dimensions

INPUT: sorted Pareto fronts l1 and l2,
binary variable coopt (true: keep co-optimals)

OUTPUT: sorted Pareto front in l1
for all l2,pre:(u1, . . . , uk):l2,suf do

add← true
for all l1,pre:(x1, . . . , xk):l1,suf do

less← false
better ← false
for j = 1; j ≤ k; j = j + 1 do

switch compare uj , xj do ▷ Compare Dim. j
case uj < xj

better ← true

case uj > xj
less← true

if better == true and less == true then ▷ Lazy
break

if (better == true and less == false) or (better == false and
less == false and coopt == false) then ▷ Coopt
add← false
break

else if (better == false and less == true) then
l1 ← l1,pre:l1,suf ▷ Remove

if add then
l1 ← l1:(u1, . . . , uk) ▷ Add

once everything we need is established. Allowing or disallowing co-optimals then boils
down to just one additional condition in an existing branch. The complexity for merging
two lists is O(l1 ⋅ l2). Both using the step mode as well as using the block mode, we will
perform no more comparisons or memory operations as by applying pfnosort. Joining M
fronts in block mode accordingly costs O(N2), employing a two way merge.

Algorithm 7.5 comarry

INPUT: unsorted Pareto fronts X and Y , cut-off size c
OUTPUT: X without elements dominated by Y , Y without elements dominated

by X
if length(X) ≤ c or length(Y) ≤ c then ▷ Recursion End

X ′
←marrybrute(X,Y)

Y ′
←marrybrute(Y,X)

return (X ′, Y ′
)

else
choose a cut plane to divide X to X1,X2 and Y to Y1, Y2 st. X1 superior X2,

Y1 superior Y2, X1 superior Y2, Y1 superior X2 ▷ Divide
(X ′

1, Y
′

1)← comarry(X1, Y1) ▷ Recursion
(X ′

2, Y
′

2)← comarry(X2, Y2) ▷ Recursion
X ′′

2 ←marry(X ′

2, Y
′

1)

Y ′′

2 ←marry(Y ′

2 ,X
′

1)

return (X ′

1 ∶X
′′

2 , Y
′

1 ∶ Y
′′

2)

Lastly, a modification of the pfyuk implementation can be adapted to merge two unsorted
Pareto fronts. Of course the fronts could be simply appended and then pfyuk applied to
them. This, however, would practically result in the same algorithm as applying pfyuk with
the standard implementation. Instead, an algorithm can be conceived as the combination
of the marry step and the entry function of pfyuk; we call it comarry, Alg. 7.5. The
idea is to recursively split up both input lists with the same median until a cut-off size
is reached. Since subsets of Pareto fronts are also Pareto fronts, we don’t need to call
pflex after the cut-off as before; Rather we need to check for dominating elements between

61

7 PARETO EAGER ADP

X1

X2

Y1

Y2

Figure 7: Sketch of the domination in comarry. Arrows indicate possible domination between
lists. We have only one dimension of domination. Horizontal arrows are solved recursively by
marrybrute, vertical arrows by marry.

both inputs lists, which can be done using marrybrute (see Alg. B.2). Similarly, we don’t
need to check for domination within each front, but rather across splits for both. This
situation is shown in Fig. 7. For the vertical splits, we can reuse the marry algorithm as
before, only now it has to be applied twice.

p

∨yuk only needs to call comarry and append
both answer lists into one answer. Merging two Pareto fronts has the same complexity as
creating a new one, so the merge takes place in O(l logd−1(l)) if we have d dimensions.
However, this means for merging M fronts by a two way merge, we gain a factor of log(M),
resulting to a total complexity of O(N logd−1(N) log(M)).

On first glance, it seems that none of the above algorithms improve the asymptotic be-
haviour of their counterparts of the standard implementation. Even worse,

p

∨yuk deteri-

orates the overall complexity. For the multi-dimensional
p

∨lex, we can assume additional
runtime factors compared to the multi-dimensional pflex, brought in by added memory

operations and the two way merge. For
p

∨nosort, it is not as clear what assumptions can
be made.
Only for the two-dimensional case of

p

∨lex, we can actually enhance complexity. Because of
the sorting step prior to applying the two-dimensional pflex, it has a total complexity of

O(N log(N)), while
p

∨lex has O(N log(M)). Since M ≤ N , this is an improvement. Con-
stant factors, e.g. by additional memory operations, might still invalidate this method,
however.

Returning for a moment to the problem of floating point accuracy, it is interesting to note
that, contrasting to all other algorithms, the multi-dimensional implementation of

p

∨lex
has self correcting potential. For all other implementations, faulty elements can remain in
the front.

7.3 Optimization

Optimizations for all algorithms except
p

∨yuk are relatively straightforward. A few general
rules for all implementations in C++ and the same general rules as before apply. The
choice to pass coopt as a parameter for co-optimality was done to keep manual code du-
plication low, therefore increasing maintainability. The performance cost for this is low.
All functions are marked for inlining and the parameter is passed as a constant value, so

62

7 PARETO EAGER ADP

the compiler is likely to duplicate the function itself and, even if not, the level of faulty
branch predictions is kept minimal. Pareto fronts are not returned by a return statement,
but are passed as reference to avoid unnecessary calls to the copy operator. If C++ 11 is
available, the less expensive move function can be used instead of copy (marked as Add),
as we work directly on the global candidate list.
For the two-dimensional

p

∨lex, switch case is used instead of branching with if to reduce
false branch predictions and speed up code jumps [28]. Comparator calls can be reduced
to exactly one call for each dimension.
For the multi-dimensional

p

∨lex, we need two levels of comparisons: one to find the next
element according to the sorting, and one for comparison within the front. The first com-
parison always includes all dimensions, so a single comparator comparing all dimensions at
once is used. All other comparisons are done by comparator calls over single dimensions.
For

p

∨nosort, all comparisons are made within one loop so that comparators are called at
most once for each dimension. The comparison loop is likely to be unrolled since the
dimension is small and constant. It should be noted that since lists are implemented as
deques, removing elements takes O(N) as with pfnosort.

Except for the entry functions, the same subfunctions are used for
p

∨yuk as for pfyuk. The
median is chosen by the same method as well. While comarry is defined recursively, it
is implemented iteratively like all other functions of the Yukish implementations to im-
prove locality. The Yukish merge was only implemented so that intermediate lists contain
pointers to elements in the global input list. When merging M fronts at once, references
for candidates are not created for each merge individually, but globally once so that no
candidate has to be transformed more than once.

The most pressing question for optimality is whether to use implementations in step mode
or block mode. For

p

∨lex and
p

∨yuk, the answer is simple, since for each call, each element of
the front needs to be moved to a new list. The inferior complexity of the step mode (see

Section 3.4.1) will therefore cause a lot of unnecessary memory operations. For
p

∨nosort,
the bigger front is always modified by elements of the smaller front. There is no significant
difference between the step mode and the block mode in terms of memory operations or
comparisons. Instead, the mechanism of the two-way merge in block mode creates a large,
unnecessary overhead. To confirm this effect in practice, we will test both modes in the
next section.

63

8 BENCHMARKS

8 Benchmarks

A number of different experiments were performed to evaluate different aspects of the
various implementations. In a dynamic programming application, intermediate results are
generated from a search space with particular properties and will be far from random.
Therefore, it is important to test all algorithms not just on artificial data, but also on real
world scenarios. Due to the nature of Bellman’s GAP, existing descriptions of bioinfor-
matics applications that were already coded in GAP-L were used for this work without
modification.

Due to the many different strategies and concepts described in this work so far, benchmarks
will be split up into multiple steps. First, we will describe the basic setup that was
used for all tests. Since the defined test cases vary in the number of dimensions of the
Pareto products and floating point accuracy is critical for some of these, we will have
a closer look at the influence of both on the programs. The Pareto operator pfyuk has
multiple competing implementations, and efficiency highly depends on the chosen cut-off
size. Likewise, lexicographically sorted ADP and Pareto eager ADP will be examined
individually before all implementations will be combined into one final test.

We will set a special focus on how the different components of the ADP definition, namely
evaluation algebras, tree grammars and the input, influence the effectiveness of implemen-
tations.

8.1 Setup

All experiments were run on a cluster system using an Intel(R) Xeon(R) E7540 CPU
clocking at 2.00 GHz. Each task was restricted to only one CPU and maximally 100 GiB
RAM. Only RAM that was physically bound to the CPU was allowed for computations to
minimize memory access times. Applications were coded in GAP-L. All C++ code was fully
automatically produced by the latest in-house version of Bellman’s GAP and not modi-
fied manually, except for adding additional functions needed for time profiling. Existing
GAP-L files were not modified. All variations are created solely by different parameters
of GAP-C.
Tests are executed in two steps when applicable. To achieve accurate comparisons, imple-
mentations are tested against each other on the level of individual calls on intermediate
candidate lists, excluding the runtime of the surrounding code, e.g. the iteration through
the search space. Only when the ideal implementation was determined, full running times,
including the full ADP program, were measured. Individual runtimes were determined us-
ing the Boost Timer Library5, for measurements within a program, or the Unix time
command, for total runtimes, respectively. Times were averaged over at least two data-
points to ensure accuracy and correctness.
The generated code was compiled using g++ version 4.8.3 with C++ 11 Standard support
and -O3 for optimization. For code generation, the option –kbacktrace was given, separat-
ing the computations into a forward phase, computing the Pareto front, and a backtracing
phase to compute string representations of all solutions in the Pareto front, in part re-
computing it. This means that all measurements contain computation times from varying
object sizes.

5http://www.boost.org/libs/timer/ [18.09.2015]

65

8 BENCHMARKS

Application Name Dim. Element Size (byte) Dataset

RNA Alignment Folding Ali2D 2 12 Rfam seed alignments[33]
RNA Alignment Folding Ali3D 3 16 Rfam seed alignments[33]
Gotoh’s algorithm Gotoh2D 2 8 BAliBASE 3.0 [34]
RNA Folding Fold2D 2 12 Rfam seed alignments[33]
RNA Folding Fold3D 3 16 Rfam seed alignments[33]
RNA Folding Prob2D 2 12 RMDB [35]
RNA Folding Prob3D 3 20 RMDB [35]
RNA Folding Prob4D 4 28 RMDB [35]

Table 2: Summary of test cases with essential properties and used databases as input. Element
sizes are estimates only for the forward phase of the computation and are only valid for the used
test system. They may vary on other systems or differ in reality due to memory padding. For
the backward phase, string representations of candidates are added, so no general estimate can be
made on their size.

8.2 Definition of ADP Tests

To achieve a both varied and representative benchmark, we tested, in total, four real
world applicable ADP applications of biosequence analysis. Each uses a two-dimensional
Pareto operator and, if suitable, also a three or four-dimensional operator, totalling seven
main test cases shown in Table 2. The applications Ali, Fold and Prob execute the same
basic task of RNA structure prediction, using the same tree grammar, but varying in
the specified evaluation algebras. Gotoh performs sequence alignment under an affine
gap model. More complete definitions are given in the following subsections. For each
application, realistic test sets were downloaded, and a subset of inputs of different sizes
were manually extracted. For detailed analysis, a number of different inputs of varying
sizes were tested. Where applicable, only representative results of preferably large inputs
will be shown to lower the amount of data presented in this work. Only inputs were chosen
for which profiling data could be extracted within 5 days of computation time. While 5
days seems to be a rather large, and for many applications sufficient, time frame, this
poses a strong restriction especially on computations with more than two dimensions, as
we will see shortly.

The asymptotic complexity of the tested ADP applications can be described in terms of the
initial input length n, as well as the runtime p and the space s of the Pareto computations
per subproblem. The Pareto front is computed once per table entry, therefore, complexities
multiply. The fold programs’ asymptotic complexity is O(n3p) in time and O(n2s) in
space. The alignment program’s asymptotic complexity is O(n2p) in time and O(n2s) in
space. The input length will be given as the number of bases (characters) in the input
sequence for the remainder of this work.

Ali and Fold were tested on the the same inputs taken from Rfam seed alignments [33]
that contains alignments of sequences known to produce stable structures. No special
attention was given to the nature of the optimal structures, only to input length. Chosen
alignments are RF01064 (input length 100, 4 sequences), RF02187 (input length 200, 24
sequences), RF00216 (input length 302, 23 sequences), RF01675 (input length 404, 19
sequences), RF01478 (input length 509, 9 sequences) and RF01271 (input length 608, 5
sequences).

The sequences and reactivities used to evaluate Prob originate from the RMDB [35]. The
selected dataset contains 146 sequences, but only three were chosen under the condition
of length and that data for three different reactivities was available.

66

8 BENCHMARKS

Gotoh2D was evaluated with Balibase 3.0 [34]. Again, sequences were chosen solely on
length.

8.2.1 Gotoh’s Algorithm

The test case Gotoh2D is an implementation of Gotoh’s algorithm [16] that solves the
pairwise alignment problem for affine gap costs. For Gotoh2D, the gap init cost is combined
with the gap extension cost in a Pareto product, and the results are printed as an alignment
string via a lexicographic product. A more complete presentation of this grammar will be
given in a yet unpublished work.

8.2.2 RNA Folding

The RNA folding space is defined by the overdangle grammar first described by Janssen
et al. [36]. Depending on the application and the number of dimensions in the Pareto
product, the folding space is evaluated with different algebras. For Fold2D, we use the
Minimum Free Energy (MFE), according to the Turner energy model [37], combined with
the Maximum Expected Accuracy (MEA) which consists in the accumulation of base pairs
probabilities computed with the partition function of the Turner model. For Fold3D, the
maximization of the number of predicted Base Pairs (BP) is added to the Pareto product.
In Prob we study the integration of reactivity data in RNA secondary prediction with
Pareto optimization. The design of algebras is based on distance minimization between
probing reactivities (SHAPE [35, 38, 39], CMCT [40] and DMS [41, 42]) and their com-
puted centroids. For Prob2D, the MFE was combined with SHAPE. Prob3D combines
MFE, SHAPE, and DMS and Prob4D MFE, SHAPE, DMS, and CMCT, accordingly. A
dot bracket string representation and a RNAshape representation of the candidates of the
front are printed via a lexicographic product. A more detailed presentation of probing
algebra products will be given in a yet unpublished work. As probing reactivities are han-
dled as doubles in the used definitions, comparisons will be handled as exact to 4 decimal
places if not noted otherwise. 4 decimal places marks the experimentally chosen highest
possible setting before problematic candidates arise for the Pareto eager implementation
(see Section 7.1).

8.2.3 RNA Alignment Folding

As Ali, we tested the behaviour of Pareto fronts in an implementation of RNAalifold
[18, 19]. We analysed structure prediction with the MFE and MEA algebras and a co-
variance model algebra COVAR following the definitions of [43]. For Ali2D, only MFE
will be combined with COVAR. For Ali3D, MFE, MEA, and COVAR will be combined
into the Pareto product. Like for the single sequence RNA folding, a dot bracket string
representation and a RNAshape representation of the Pareto front candidates are added
via a lexicographic product. It should be mentioned that alignment folding is defined over
the same overdangle grammar as the single sequence case, only now, the input alphabet
is columns of aligned characters, including gap symbols. Accordingly, for this case, the
Rfam seed alignments were left intact, while for Fold only the first sequence was used.

67

8 BENCHMARKS

Name Compared Decimal Places
Front Size Runtime (s)

1 2 3 4 1 2 3 4

Input Size 96

Prob2D 9 16 16 16 0.07 0.09 0.09 0.09
Prob3D 23 27 27 27 0.28 0.31 0.31 0.31
Prob4D 183 188 177 183 1.20 1.36 1.40 1.44

Input Size 185

Prob2D 8 8 8 8 1.79 2.06 2.08 2.08
Prob3D 103 143 145 146 37.73 52.80 53.85 54.02
Prob4D 1307 2000 2211 2327 504.38 1013.06 1054.85 1214.16

Table 3: Pareto front sizes and runtimes for varying Pareto dimensions and floating point accuracy
settings. Runtimes were computed in the standard implementation of ADP with pfnosort for two-
dimensional products and pfyuk for all other products. Pareto front sizes indicate only the size
of the final result. Both runtime and front sizes show an exponetial increase with increasing
dimension. Lowering floating point accuracy can lower computation times.

8.3 Influence of Pareto Dimensions and Floating Point Accuracy

Before executing any benchmarks, it is important to explore and understand the influence
of parameters other than the implementation of the Pareto front operators and the ADP
definition on the computation properties. While it is almost impossible to analyse every
component that can influence Pareto front sizes and with that running times, the goal
of this section is to at least give the reader a broad idea of what it means in practice
to increase the dimension of the Pareto operator. At the same time, we will see what
influence different floating point accuracy settings have on the computations.

As Prob is the only case that allows the definition of a four-dimensional product, we will
restrict analysis to this application for this section. All possible combinations of products
with 2-4 dimensions (Prob2D, Prob3D and Prob4D) and floating point accuracies between
1 to up to 4 exact decimal places were tested using two inputs of different sizes. A summary
of the results is shown in Table 3. For all tests, Pareto front sizes increased exponentially
with increasing dimensions. Accordingly, computation times increased exponentially as
well. Already for the three-dimensional Pareto product, runtime increased by a factor
of over 25 for the longer input, less for the smaller input. For input size 185, the two-
dimensional front could be computed in about 2 seconds, while the four-dimensional case
already took up to more than 20 minutes. Anecdotally, even longer inputs for Prob4D
could not finish within multiple days of computation time. Similarly, for Ali3D, the longest
fully testable input finished within a few seconds, while the next available test input did
not finish at all. As such, theory and practice converge well for this example. It should be
clear from these results alone that dimensions should not be added without merit. Careful
tests should be set up by the user to ensure problems stay within a sensible range for new
applications.
However, the data also shows the strong influence of floating point settings on the runtime,
and thus, a possible heuristic to lessen the negative effects for some applications. The
bigger the overall Pareto front becomes, the stronger the influence of the floating point
is. For the longest input in Prob4D, more than half of the runtime and a bit less than
half of the elements of the Pareto front could be saved when only comparing up to one
decimal place instead of four. For Prob3D, the improvement is still about one third. The
overall behaviour is fairly expected, as with lower accuracy, individual elements can easier
dominate other elements in the list. This effect becomes stronger the more elements stand

68

8 BENCHMARKS

(a) (b)

Figure 8: Comparisons of the Reference (pointer) based and the Copy based implementations
of pfyuk. The graphs show the runtime of each implementation for varying length of the cut-off
value. Graphs show results for an input of length a) 185 with a final Pareto front of 2378 elements
and b) 168 with a final Pareto front of 7529 elements. In both cases, the Reference based version
performs better for the best cut-off.

in concurrence to each other. It should be noted that while improvement can be always
expected, it is plausible to assume that the high level of improvement we saw for Prob in
this test case can not be reproduced for most other algebras, as the effectiveness is highly
linked to the spectrum of produced candidate values.
As a further thought, the ultimate goal of the Pareto front should not be forgotten.
Reducing candidates might not be a desired effect for all ADP problems, although likely
to be uncritical for Prob.

8.4 Optimizing pfyuk and
p

∨yuk

The implementations of pfyuk and
p

∨yuk can be optimized along multiple criteria. As noted
in Section 4.3, a number of different implementation strategies could already be dismissed.
In this section, we will analyse the best choices for the two biggest open parameters for
performance.

As described in previous sections, the internal lists of the Yukish-inspired algorithms can
be implemented in different strategies. As a first choice, elements are copied in full for each
intermediate list (Copy). Alternatively, intermediate lists can contain memory pointers to
the elements of the input list, thus containing only references to elements (Reference). To
determine the best choice between both, a preliminary test was executed on two inputs
on Prob4D, guessing a range of possible cut-off values. The results of this test are shown
in Fig. 8. Overall, the results seem to vary with different choices of cut-offs. However,
as a general trend, the reference based approach seems to be superior for most cases. In
both tests, the shortest runtime was achieved using reference lists, with no copy value
coming near a similarly good time. While this test is not comprehensive, it serves as a
good indicator that when nothing else is known, the reference based method should be
used. As such, GAP-C will automatically include the functions of this implementation,
while the copy approach can be used by a manual switch in the code. For the Pareto eager
implementation

p

∨yuk, consecutively only a reference based implementation was created
and can be used.

A vital factor for performance is the choice of optimal cut-off values for different ADP
applications. As no definition of Gotoh with more than two dimensions was used for this
work, it was excluded from the trial. The tested range of cut-off values was determined

69

8 BENCHMARKS

(a) (b)

(c) (d)

Figure 9: Runtimes of pfyuk and
p

∨yuk for different cut-off values. pfyuk and
p

∨yuk are set in
different scales to ease the comparison of general trends. Graphs show summarized runtimes for
multiple inputs for a) Ali3D b) Fold3D c) Prob4D and d) all available data. Different scales are

used for pfyuk (left) and
p

∨yuk (right) as they exhibit strongly different runtimes.

prior to the exhaustive test by single test calls to minimize computation effort. The
results for all applications are summarized in Fig. 9. Before analysing the data in depth,
it is necessary to recall that all applications have been defined over the same grammar.
For Ali3D and Fold3D, even the same data has been used as the basis of the input. Yet,
applications show strongly different behaviour. Both Ali3D and Fold3D show improvement
with rising cut-off values. Fold3D additionally shows a small spike at 65 elements. Most
interestingly, for Prob4D the whole trend is inverted, with bigger value causing higher
computation time. Taking the equal grammar definitions into consideration, these changes
can be attributed to differences in algebra functions. It is possible that even better cut-offs
exist for Ali3D and Fold3D by further increasing the cut-off size. Combining the times of
all individual tests into one graph (Fig. 9d), however, shows a clear winner at a cut-off
at 65 elements. This result is somewhat biased towards computations with longer overall
runtime, but one might argue that a good cut-off is especially valuable for these cases. To
keep trials simple, 65 was set as a standard value in Bellman’s GAP and for all further
tests.

As another result of these tests, the strong benefits that can be achieved by varying settings
should be noted. As a general rule, the cut-off should be calibrated to fit individual
applications if feasible and necessary. It is very possible to save multiple minutes of
computation times by different choices even for single inputs.

Analysing the graphs for
p

∨yuk reveals slightly different results. All individual tests exhibit
generally low computation times for small cut-off values with computation times increas-
ing more or less smoothly with increasing cut-off values. Except for Fold3D, where the
optimum is at 55, the optimal computation time is at 25 elements. Unsurprisingly, the
combined plot of all values shows the same trends. As a result, 25 was set as the default
value of

p

∨yuk. Please note that different scales were used for pfyuk and
p

∨yuk, as the Pareto

70

8 BENCHMARKS

Algorithm Avg. Comp. Calls Gain (s) Separator

Trial 1

S1 Quicksort 26,692.7
S2 List-Join 1,137,920.0 - no significant gain
S3 Queue-Join 21,780.1 29.0 Always use Alg. 3
S4 In-Join 716,920.0 - S4 never performs consistently better
S5 Merge A 18,043.2 11.3 use S5 when N

M
≥ 4

S6 Merge B 18,700.0 7.8 use S6 when N
M

≥ 6
S7 Merge In-Place 18,043.2 13.4 use S7 when N

M
≥ 3

Trial 2

S1 Quicksort 222,480.0
S2 List-Join 50,668,600.0 - no significant gain
S3 Queue-Join 181,884.0 33.2 when N

M
≥ 8

S4 In-Join 31,480,100.0 - S4 never performs consistently better
S5 Merge A 157,102.0 44.9 use S5 when N

M
≥ 4

S6 Merge B 161,502.0 28.1 use S6 when N
M

≥ 7
S7 Merge In-Place 157,102.0 62.7 use S7 when N

M
≥ 3

Table 4: Maximal runtime gain of S2-7 compared to S1 for randomized uniform trial sets 1
and 2. The number of comparator calls was averaged over all data points, ignoring separators.
Separators indicate where an algorithm becomes superior to S1. Separators for runtime gain can
operate solely on the total length of the input list N and the number of known sorted sublists M .
They are estimated exact to the nearest integer for linear separation and to two decimal places for
logarithmic separation, in both cases assuming the simplest form without any offset variables.

eager merge always performed strongly worse than the standard implementation. This
gives us already a strong indicator that

p

∨yuk has no value in practice. It will remain in
the further tests as a point of reference, however.

8.5 Lexicographically Sorted ADP

For the lexicographically sorted implementation of ADP, two types of experiments were
performed, looking at artificial data and real world scenarios. Experiment 1 uses two
random trials to evaluate performance of Pareto front computations based on the sorting
algorithms S1-7 defined in Section 6.1. The outcome is of interest for programmers who
consider Pareto optimization, but not necessarily in a dynamic programming context. It
will also serve as a reference for the second experiment.
In a dynamic programming application, intermediate results are generated from a search
space with particular properties. Such candidate lists will be far from random and gen-
erally unsorted. In Experiment 2, we therefore test the algorithms on the applications
defined at the beginning of this section.

8.5.1 Randomized Trial

Two randomized trials were conducted to confirm the viability of all implementations.
For this, we uniformly sample datapoints for 1 ≤ N ≤ 3,000 (Trial 1) and 1 ≤ N ≤ 20,000
(Trial 2) list elements over 1 <M < N sorted sublists. Trial 1 was ended at 200,990 tests,
Trial 2 at 150,505. All list elements have a size of 22 bytes, bigger than most forward
computation, but smaller than all backtracing elements in the next experiment set. The
times of S2-7 were compared against the corresponding times of S1, both in total, for
all points, as well as utilizing a separator on N and M between the sets. All but one
algorithm perform either in O(N log(M)) or O(N ⋅M), compared to O(N log(N)) of S1,

71

8 BENCHMARKS

(a) (b)

Figure 10: Runtime gain of individual data points for a) S3 Queue-Join and b) S7 Merge In-Place
against S1 Quicksort in Trial 2. Points are plotted when one algorithm performed better than the
other with point sizes relative to the gained time. Maximally 50,000 uniformly chosen points are
plotted per graph. Separators are indicated by a black line.

thus linear or logarithmic separators should be applied respectively. A summary of the
results is presented in Table 4.
The clear winner of the first trial is S3 (Queue-Join), outperforming Quicksort across all
tested combinations, followed by S7 and S5 with linear separators. In the second trial,
S3 moves down to third place, overtaken by S7 and S5. The reason for this is the bad
scaling behaviour of S3 that becomes apparent when comparing graphs for S7 and S3.
Both algorithms gain over Quicksort when M is small relative to N and sublists hence
are long. Fig. 10 shows that S7 (Merge In-Place) gains more than S3 and hence performs
better on the larger data set.
For S4 and S2, no noticeable gain could be found in any trial, which likely can be at-
tributed to their inferior complexity, both showing a drastic increase in comparator calls
compared to S1. All other algorithms average below S1 on comparator calls. S6 consis-
tently performs worse than S7, the additional tests not yielding any performance boost.
In Trial 1, S5-7 clearly outperformed S3 regarding comparator calls while showing longer
runtimes. This difference can be explained by the number of memory operations executed
by each algorithm. In a randomized setting, only few elements will be initially placed cor-
rectly in the list. S3 performs in guaranteed N moves – whereas S5-7 take asymptotically
O(N log(M)) moves for this case – amortising the time needed to allocate new memory
and destroy the old list on small data. S7 and S5 perform best regarding comparator
calls, showing the same average value. Looking at computation times alone, S7 is always
slightly faster, however.

8.5.2 Structured Trial

The tests in this section were executed in 2 steps. To achieve an accurate comparison of
the sorting algorithms, first, all sorted implementations were tested, excluding the run-
time of the surrounding code, e.g. the iteration through the search space. After identifying
the algorithm with the biggest time gain, possibly using a separator, a second test was
performed, comparing the full running times of all applications, including the full ADP
programs. For now, we will restrict the analysis to only sorted implementations. We will
see in a later section how they relate to other implementations. A summary of all results
is presented in Table 5.

72

8 BENCHMARKS

Name Input Size Front Size Gain (s) Algorithm Sort (s) Spec. Sort (s)

Ali2D 509 487 59.1 S7 579.8 530.0
Ali3D 200 446 0.1 S7 5.0 4.9
Gotoh2D 249 209,744 0 S7 29.4 30.3
Fold2D 608 13 304.7 S7 2220.2 1833.3
Fold3D 404 165 40.7 S7 847.0 806.7
Prob2D 185 9 0 S7 3.64 3.6
Prob4D 185 2327 125.1 S7 2518.8 2469.8

Table 5: Summary of computation times and meta-data of sorted test cases. Left: Isolated sorting
time gains over S1. Input length and the final size of the resulting Pareto front are given. Right:
Sort and Spec. Sort show the full running times of the basic sorted (S1, pflex) and the specialized
sorted (S7, pflex) case respectively.

Most noticeably, comparing algorithms S2-7 to S1, a speed up over S1 could be achieved for
most test cases. Exceptions are Ali3D and Prob2D, both of which have a very low overall
computation time, and Gotoh2D. In all cases, S7 (Merge In-Place) was the best performing
algorithm. Also, in contrast to the randomized trials, no separator was needed to optimize
runtimes. In all cases, S7 consistently scored better or equal to S1. S5 performed second
without any exceptions in the tested sets. While S3 appeared promising in the randomized
trials, only for Prob4D a separator could be found such that S3 could achieve a runtime
gain, even though it was significantly lower than that of S7. Like in the randomized trials,
S6 performed consistently worse than S5. S4 and S2 never achieved any gain. Comparing
the estimated gains of the direct comparison of the sorting algorithms to the full ADP
tests reveals no significant discrepancies.
The discrepancies between randomized and realistic test cases can be well explained by
the nature of ADP and the non-random character of intermediate lists. Unlike in the
random trials, lists become very long very quickly and long intermediate lists dominate
the runtime, explaining the bad performance of S3. Separators for S7 become unneeded
as on average more than three elements – as determined by the separator in the random
trial – are generated per sublist. This is not unexpected as lists are created by combining
subresults that themselves are likely to contain more than three elements, even for small
inputs. This property can likely be reproduced for most other grammars that contain at
least one rule generating sublists proportional in number to the input length, as is the
case for the folding grammar.
The analysis, however, becomes more complicated when trying to explain the variation
between the different ADP applications.
Neither input size nor front size seem to be a good indicator on which algorithm works
best. Most noticeably, the largest gain over S1 was achieved with a final front size of 13
for Fold2D. For Ali3D, there was nearly no gain, despite a much larger final front size
of 446. Prob4D and Ali3D were executed on similarly sized inputs, but only one could
achieve a significant gain. The reason for these observations is that no direct statements
can be made about intermediate list and front sized by input size or final front size alone.

Most informative is the layout of the search space. In Fig. 11, the scatter plots for Fold2D,
showing the best improvement, and Gotoh2D, with no improvement, are presented. In its
moderate computation time and large final front size, Gotoh2D shows only very limited
variance for intermediate results. The final Pareto front consists mostly of co-optimals
that are only added in the last step of the computation and are not present for the sorting
phases. Comparing the full computation times of Gotoh2D, the overall time variance is
minimal, which can be explained by the small intermediate lists. The ultimate reason for
this is the problem decomposition of Gotoh2D. At most 3 sorted sublists are combined

73

8 BENCHMARKS

(a) (b)

Figure 11: Runtime gain of individual data points of S7 against S1 for the test cases a) Fold2D
and b) Gotoh2D. Points are plotted when one algorithm performed better than the other with point
sizes relative to the gained time. Gotoh2D shows only very little variance in list sizes contrary to
Fold2D, explaining the performance differences.

Name Input Size Front Size Gain (s) Separator pflex (s)
p

∨lex (s)

Ali2D 509 487 220.46 - 579.77 356.11
Ali3D 200 446 - - 4.97 8.04
Gotoh2D 249 209,744 - - 29.42 29.83
Fold2D 608 13 762.16 - 2220.24 1054.39
Fold3D 404 165 - - 841.64 5810.36
Prob2D 185 9 0 - 3.64 2.76
Prob4D 185 2327 - - 2556.83 14,552.12

Table 6: Summary of computation times and meta-data of Pareto eager test cases. Left: Esti-

mated time gains for
p

∨lex with S1 over pflex. Input length and the final size of the resulting Pareto
front are given. Right: Full runtimes are given.

by the tree grammar, while the evaluation algebra also does not allow much variation. In
contrast, the grammars for the other applications have at least one rule that generates
sublists of length proportional to the input length. We will later revisit this analysis when
comparing the runtime of all algorithms.

As a result of the benchmarks of this section, Bellman’s GAP was set to use no separators
as default. Should the need arise for separators for later applications, the integration into
GAP-C is trivial by extending existing functionality. Calls to all sorting algorithms but
S1, for the standard implementation, and S7, for lexicographically sorted implementation,
have been removed. Their implementations remain in the header files, however, and they
can be added manually.

8.6 Pareto eager ADP

Much like for lexicographically sorted ADP, we want to test the behaviour of different
Pareto eager implementations before comparing them to all other methods. The main
goal is to determine possible separators, indicating when one algorithm performs better
than the other, between the standard implementation with pflex and the Pareto eager

implementation with
p

∨lex. We have already seen the poor performance of
p

∨yuk compared
to pfyuk in Section 8.4, hence no separators can be found between both methods. We will

also keep the analysis of
p

∨nosort and pfnosort to the next section, as they represent the
same algorithm – only called on differently sized lists – and therefore no useful separators
are likely to exist.

As randomized uniform Pareto sets are hard to construct, we will restrict analysis to the

74

8 BENCHMARKS

(a) (b)

(c)

Figure 12: Runtime gain of individual data points of pflex against
p

∨lex for the test cases a)
Fold2D, b) Fold3D and c) Gotoh2D. Points are plotted when one algorithm performed better

than the other with point sizes relative to the gained time. For the two-dimensional Fold2D,
p

∨lex

performs best. For the three-dimensional Fold3D, pflex always performed better. For Gotoh, the
plot shows only limited variation and no winning algorithm.

ADP applications only. Again, the tests were executed in 2 steps, first comparing the
runtimes at the level of intermediate subproblems, excluding the runtime of the surround-
ing code, afterwards comparing the full running times of the best implementations. As
separators, linear and exponential separation based on values of N and M are considered,
motivated by the asymptotic complexity of the compared implementations that differ in
factors of these two variables. A summary of the results is shown in Table 6.
Looking at the data, one may notice two things. First of all, no separators are given
for any case. The reason for this is that in no case any improving separators could be
found. In all cases, one algorithm performs best for all data points. Secondly, with the ex-
ception of Gotoh2D, for two-dimensional definitions

p

∨lex always performed best, whereas
for higher dimensions, pflex is superior without fail. The explanations for both are not
entirely unrelated. The difference between dimensions is of course a result of the different
underlying product definitions.

The two-dimensional case is very similar to the sorted case, only that we apply Pareto
operators as well as sorting the elements. In a way,

p

∨lex works similar to a normal two way
merge sort with a merge step definition that is not in place, reflected by the complexity
of O(N log(M)). By the same arguments as before,

p

∨lex is likely to perform better than
executing a sorting in O(N log(N)) when M << N . Reversely, if the number of sublists M
is near the number of elements N , and sublists are very short, pflex will perform better. As
intermediate lists are created by combining subresults, the length of individual subresults
are likely to stay over a certain threshold that seems to be high enough in order for

p

∨lex
to perform well.
For higher dimensions, the situation changes, as now both algorithms perform in O(N2),
the complexity of the Pareto operations now dominating the sorting aspects of both imple-

75

8 BENCHMARKS

Mode Alg. Sort Alg. Complexity Move Comperator

S
ta

n
d
a
rd

pfnosort - O(N2
) no -

pflex 2D S1 O(N +N log(N)) no -
pflex 3D+ S1 O(N2

+N log(N)) no -
pfisort - O(N2

) no -

pfyuk - O(N logd−1
(N)) partial one dim., all dim.

S
o
rt
. Block pfnosort S7 O(N2

+N log(M)) only in sort all dim.
pflex 2D S7 O(N +N log(M)) only in sort all dim.
pflex 3D+ S7 O(N2

+N log(M)) only in sort all dim.

P
a
re

to
e
a
g
e
r Block

p

∨nosort - O(N2
) yes one dim.

p

∨lex 2D - O(N log(M)) yes one dim.
p

∨lex 3D+ - O(N2
) yes one dim., all dim.

p

∨yuk - O(N logd−1
(N) log(M)) yes one dim., all dim.

Step
p

∨nosort - O(N2
) yes one dim.

Table 7: Summary of all implemented methods for computing Pareto fronts. Algorithms are
classified by implementation (standard implementation, lexicographically sorted ADP, Pareto eager
ADP) and mode (step, block). Move indicates whether the C++ 11 function move can be used to
avoid copying elements. Comparators are generated either for testing all dimensions in one call

(all dim.), or to test each dimension individually (one dim.).
p

∨nosort is the only Pareto operator
that does not create new lists for results.

mentations. However, the additional factors brought in by the different scenarios strongly
favour the use of S1 and a single operator step, compared to multiple smaller operator
steps, each in O(N2). This seems to be true already for small N and accordingly, only
grows worse for longer candidate lists. The scatter plots in Figs. 12a and 12b confirm the
theories for both cases.
Like in the sorted scenario, Gotoh2D shows hardly any variation in the computation times.
Of course, the same rationale as before applies to explain this behaviour. As we can see in
Fig. 12c, due to the Pareto condition, intermediate lists are even shorter and allow even
fewer variations and with even less potential for better performing algorithms.

Following the results of this section, no separators will be generated within Bellman’s
GAP.

8.7 Putting it all together

Now that all individual components have been established, it is time to execute a final
benchmark that compares all competing scenarios. To ease the reader into the analysis,
a summary of all implementations with their most important properties are presented in
Table 7.
For this test, only full runtimes were measured, including all recursions of the ADP pro-
grams. A summary of all runtimes over all applications is described in Table 8. We will
analyse the data in multiple steps, referencing results from previous subsections as needed.

The most noticeable observation that can be made from the data is that pfnosort performs
best for most cases, both for two-dimensional and higher-dimensional cases. This repli-
cates the results of the preliminary implementations done in [13]. It is likely that this
good behaviour can be attributed to a positive randomization effect. When operating on
sorted lists, extremal points of the Pareto fronts that are maximal in one dimension, but
minimal in others, will be tested first. Such a point is unlikely to create domination over
a new element, as it dominates only a rather small volume in the system of possible val-

76

8 BENCHMARKS

N
a
m
e

In
p
u
t

F
ro

n
t

S
ta

n
d
a
rd

A
D
P

S
o
rt
e
d

A
D
P

P
a
re

to
e
a
g
e
r
A
D
P

B
lo
ck

B
lo
ck

S
te

p

p
f n

o
s
o
r
t

S
1
p
f l
e
x

p
f i
s
o
r
t

p
f y

u
k

S
7
p
f n

o
s
o
r
t

S
7
p
f l
e
x

p ∨
n
o
s
o
r
t

p ∨
le
x

p ∨
y
u
k

p ∨
n
o
s
o
r
t

A
li
2
D

1
0
0

5
1

0
.3
9

0
.4

3
0
.4

1
-

0
.5

3
0
.4

4
0
.5

7
0
.4

2
-

0
.4

2
2
0
0

4
4

0
.5

0
.5

0
.5

1
-

0
.5

6
0
.5

2
0
.5

9
0
.5

5
-

0
.4
8

3
0
2

1
2
5

7
1
.1

7
6
.4

1
0
3
.6

-
1
3
1
.4

7
4
.7

1
4
7
.9

5
9
.4
6

-
8
2
.1

4
0
4

1
2
1

6
.1

7
5
.7

3
9
.0

6
-

1
0
.5

9
5
.2

4
1
1
.6

3
4
.5
3

-
6
.2

3
5
0
9

4
8
7

6
6
7
.8

4
5
7
9
.7

7
1
3
2
0
.4

3
-

1
6
4
7
.6

4
5
2
9
.9

8
1
7
2
0
.6

5
3
5
6
.1
1

-
7
7
5
.7

7

A
li
3
D

1
0
0

1
7
6

3
.9
2

4
.3

3
-

4
.7

2
4
.7

8
3
.9

5
1
1
.7

4
1
1
.9

4
1
5
.2

7
4
.5

6
2
0
0

4
4
6

5
.4

3
4
.9

7
-

4
.9

3
5
.5

9
4
.8

8
6
.4

8
8
.0

4
8
.0

9
4
.8
5

G
o
to

h
2
D

2
4
9

2
0
9
,7

4
4

2
9
.1

9
2
9
.4

2
2
9
.8

7
-

2
9
.7

7
3
0
.3

2
2
8
.7
5

2
9
.8

3
-

2
8
.7
5

F
o
ld
2
D

1
0
0

1
0
.4

3
0
.4

7
0
.4
2

-
0
.5

0
.4

9
0
.5

3
0
.5

2
-

0
.4

3
2
0
0

7
3
.1
9

3
.7

5
3
.3

1
-

4
.1

3
.9

3
4
.4

2
3
.8

1
-

3
.3

9
3
0
2

2
1
7
.0

2
0
.7

7
1
8
.2

9
-

2
3
.0

8
2
1
.9

3
2
6
.5

7
2
1
.0

6
-

1
8
.4

3
4
0
4

2
0

3
6
.9
8

5
0
.8

3
3
8
.9

5
-

5
2
.2

5
4
9
.5

3
6
8
.7

2
4
6
.7

-
4
0
.0

7
5
0
9

1
4

1
5
4
.1
2

3
3
4
.5

3
1
6
4
.5

5
-

3
3
5
.2

3
3
1
2
.2

8
6
1
4
.0

9
2
1
6
.5

4
-

2
2
8
.2

9
6
0
8

1
3

6
3
1
.4
3

2
2
2
0
.2

4
7
0
5
.9

7
-

1
9
4
0
.5

1
8
3
3
.3

1
6
0
4
1
.0

4
1
0
5
4
.3

9
-

1
2
7
9
.0

3

F
o
ld
3
D

1
0
0

6
0
.5

0
.6

5
-

0
.8

4
0
.6

6
0
.6

5
1
.0

8
1
.1

2
1
.5

2
0
.5

6
2
0
0

8
8

5
.9
2

1
0
.2

9
-

1
1
.6

9
1
0
.3

8
9
.9

6
2
4
.1

6
2
4
.3

3
0
.0

3
8
.9

7
3
0
2

1
8
1

9
1
.8
8

1
8
6
.1

6
-

1
9
6
.2

1
1
8
5
.6

7
1
8
0
.5

1
8
2
9
.8

7
9
6
.3

3
8
1
4
.9

1
7
4
.7

4
0
4

1
6
5

3
1
4
.5
2

8
4
1
.6

4
-

7
0
4
.0

3
8
6
8
.0

5
8
0
6
.6

7
5
8
1
6
.3

7
5
8
1
0
.3

6
4
5
8
3
.5

6
8
1
3
.2

P
ro

b
2
D

9
6

1
6

0
.0
9

0
.1

2
0
.0
9

-
0
.1

6
0
.1

5
0
.1

6
0
.1

5
-

0
.1

1
8
5

8
2
.0
5

3
.6

4
2
.2

-
4
.0

8
3
.6

4
.4

2
.7

6
-

2
.3

6

P
ro

b
4
D

9
6

1
8
3

0
.8
2

1
.0

8
-

1
.4

8
0
.9

4
0
.9

4
1
.6

9
2
.3

7
4
.0

9
0
.9

4
1
8
5

2
3
2
7

1
7
7
4
.8

8
2
5
5
6
.8

3
-

1
2
2
7
.1
3

2
4
6
9
.8

2
4
4
9
.8

3
9
9
9
0
.0

8
1
4
,5

5
2
.1

2
1
3
,8

1
4
.6

4
2
5
3
5
.1

1

T
a
b

le
8
:

S
u

m
m

ar
y

of
b

en
ch

m
ar

k
s

fo
r

al
l

ap
p

li
ca

ti
on

s.
A

re
p

re
se

n
ta

ti
ve

se
t

o
f

in
p

u
ts

w
er

e
te

st
ed

fo
r

ea
ch

te
st

ca
se

.
A

lg
o
ri

th
m

s
a
re

cl
a
ss

ifi
ed

b
y

im
p

le
m

en
ta

ti
on

(s
ta

n
d

ar
d

im
p

le
m

en
ta

ti
on

,
le

x
ic

og
ra

p
h

ic
a
ll

y
so

rt
ed

A
D

P
,

P
a
re

to
ea

g
er

A
D

P
)

an
d

m
o
d

e
(s

te
p

,
b

lo
ck

).
N

o
im

p
le

m
en

ta
ti

o
n

p
er

fo
rm

ed

b
es

t
fo

r
al

l
te

st
s.

p
f n

o
s
o
r
t

p
er

fo
rm

ed
b

es
t

in
m

os
t

ca
se

s.
F

o
r

A
li

2
D

,
p ∨
le
x

co
n

si
st

en
tl

y
a
ch

ie
ve

d
th

e
sh

o
rt

es
t

ru
n
ti

m
es

.
F

o
r

P
ro

b
4
D

,
p

f y
u
k

is
th

e
fa

st
es

t
im

p
le

m
en

ta
ti

on
.

77

8 BENCHMARKS

ues. On unsorted lists, non-extremal points are on average encountered earlier and thus,
domination can be established earlier in the computations. A good indicator for this can
be found in the data when comparing the tests of pfnosort and pflex for the sorted imple-
mentation. For both tests, the same sorting mechanism was used and hence, the times for
sorting are the same. For no test under these conditions, pfnosort performed better than
pflex. Without utilizing the randomized effect, pfnosort becomes nothing more than a less
effective implementation of pflex, testing unnecessary conditions, regardless of the number
of dimensions. As another possible factor, of course, pfnosort benefits from not having to
rearrange all elements in a sorting, especially for strongly unsorted candidate lists.
The use of pfnosort in sorted ADP, as well as the implementations of

p

∨nosort for Pareto
eager ADP in both modes, show no significant improvement. In contrast, except for two
cases with very small overall computation times – where step-wise

p

∨nosort was best – and
Gotoh2D, all other uses show a significant increase in running times. Block mode

p

∨nosort

is always drastically slower than using the step mode, as was expected by the overhead of
the two-way merge structure. The bad performance in the sorted case could already be
explained in the last paragraph. The reason why step-wise merge performs worse than in
the standard implementation is not directly apparent. At least in theory, the Pareto eager
implementation should benefit from three factors:

• candidates do not need to be copied

• omission/integration of the lexicographic product as an optimization

• candidate lists are reduced in size early on

These, however, seem to be counterbalanced by:

• overhead of additional function calls

• overhead of the use of comparators

• increased level of false branch predictions due to breaking up the work of one loop
into multiple calls

Only the second problem could be fully removed when creating inlined code instead of
using the template interface of the current implementation.

As expected by its bad complexity,
p

∨yuk could not perform well in any case, in fact
increasing runtimes by a factor of more than 10 for all cases. While not as dramatic in
outcome, pfisort also never performs better than pfnosort and can therefore be discarded.
The reason for this can likely be found in the loss of the randomization effect due to sorting
the list, as well as the use of expensive insertion operations.

This leaves open pfyuk, the sorted implementations as well as the Pareto eager implemen-

tation using
p

∨lex, all of which have a specific use-case.
Contrasting to most tested applications, for Ali2D and Ali3D, pfnosort could not perform

best. For Ali2D, instead
p

∨lex was consistently better. At the same time, pflex, for both
the sorted as well as the standard implementation, performed better than pfnosort as well.
This is a unique case within all other test cases. The two facts are not without a deeper
connection, however. We already saw that for all cases, the sorted implementation with
S7 can improve the runtime compared to the standard implementation with S1. In fact,
the strongest improvement can be found in Fold2D. Yet, for no application the increase
was enough to overtake the standard pfnosort. Only for Ali, where pflex already performs
better than pfnosort, the sorted implementation can increase the overall implementation

time even more. Here, however, then the two-dimensional case Pareto eager
p

∨lex becomes

78

8 BENCHMARKS

(a) (b)

(c) (d)

Figure 13: Runtime gain of individual data points for Top) S7 against S1 and Bottom) pflex
against

p

∨lex for the test case a, c) Ali2D and b, d) Fold2D. Points are plotted when one algorithm
performed better than the other with point sizes relative to the gained time. Both algorithms show
similar distributions as they were defined over the same grammar using the same input.

the best implementation.
The reason for this is that pflex and

p

∨lex profit from the same properties of the search
space that allow an effective merge of presorted lists. At least in this case, the Pareto
eager implementation seems to benefit the strongest, although sorted ADP and Pareto
eager ADP have similar advantages and disadvantages. The early reduction of candidate
lists is the most likely reason for the good performance of

p

∨lex.
This does not mean that sorted ADP is without merit, however. Although step-wise
Pareto eager pfnosort performed best for Ali3D, the good effect of the sorted implemen-
tation compared to the standard pfnosort can be seen here as well. Due to the increased

complexity,
p

∨lex no longer is a well-performing candidate. For larger inputs, sorted ADP
with pflex can be expected to be the best option for Ali3D and similar cases. Likewise,
if products are needed for the two-dimensional case that are currently not supported by
Bellman’s GAP in Pareto eager implementations, the sorted implementation can serve as
a fall-back option.

While explaining the relation between the different algorithms fairly well, the analysis, so
far, lacks an explanation of why only Ali behaves differently than all other implementa-
tions. For this, it is time to return to the layout of the search space. In Fig. 13, the
plots of intermediate lists for the sorted and the Pareto eager implementations are shown.
Sorted and Pareto eager plots show the same data, only for different time gains. The plots
are created against the same base, and the same scaling factor was used to compute the
size of each marker. Therefore, all plots are inter-comparable. The time gains for the
Pareto eager implementation are visibly greater than those of the sorted implementation,
as is the case for all two-dimensional products.
Ali2D and Fold2D were computed out of the same data and use the same tree grammar,
employing the same number of evaluation algebras. The difference in the distribution

79

8 BENCHMARKS

of data points is therefore caused by the qualitative influence of the evaluation algebras.
Fold2D generates smaller lists, with, in relation, fewer sublists compared to Ali2D. This
alone, however, can not explain why for Ali2D consistently

p

∨lex performs best, while for
Fold2D, the standard unsorted case is considerably faster. This discrepancy most likely
can be related to the order and sortedness in which candidates are created, sortedness
addressing how many elements are inverted in the lists upon creation.

In a way, one can hypothesise a dichotomy between the sortedness and competing unsort-
edness of generated candidate lists,

p

∨lex and pfnosort standing at the ends of this spectrum.

The more initially sorted a candidate list is, the more effective
p

∨lex and pflex can work,
while the randomization effect for pfnosort is at the weakest. With decreasing sortedness
the situation tilts in the direction of pfnosort. To fully substantiate this theory a close
analysis of intermediate lists should be executed.

The strong effect of different grammar definitions becomes apparent when taking another
look at Gotoh2D. We already saw in the last section that Gotoh2D varies strongly from
all other cases that were defined over the same grammar, limiting the variation within
intermediate candidate lists (see Fig. 11b and 12c). This reflects on the very limited
time difference for not just the sorted and Pareto eager implementation, but all tested
algorithms.

As a last case, we need to take a closer look at Prob4D. Of all applications, Prob4D was
the only case to define a Pareto product over four dimensions and because of this, it is
also exhibiting very long intermediate lists. As such, Prob4D was the only case where
the superior asymptotic complexity of the unsorted case with pfyuk resulted in an actual
performance increase. It is interesting to note that Fold3D also exhibited similarly-sized
intermediate lists for the largest input, but instead of improving runtimes, pfyuk doubled
the effort. In its complicated definition, pfyuk employs high internal factors for runtime
that can only be overcome for large inputs. Higher-dimensional products are more likely
to fulfil this property. It should also be noted that – similar to

p

∨lex and pflex – the
effectiveness of pfyuk depends on how well each dimension can be partitioned, in other
words, how well the search space can be sorted. Therefore, applications that can benefit
from the unsortedness the most with pfnosort, might as well show a disadvantage of pfyuk.

All tested implementations will be kept in the Bellman’s GAP system. The optimal choice
is left to the user. Based on the results of this section, users are advised to follow the
following rules when creating new applications with Pareto optimization in Bellman’s
GAP:

• pfnosort should be considered first for all implementations, as it performs best in
most cases, and the formulations of standard ADP allow the greatest flexibility.

• If pfnosort does not perform fast enough and a two-dimensional Pareto front is em-

ployed, Pareto eager
p

∨lex or sorted ADP pflex should be tried, depending on the
surrounding products.

• If pfnosort does not perform fast enough and a higher-dimensional Pareto front is
used, pfyuk or sorted ADP pflex should be tested.

• When using pfyuk and the time is critical, the cut-off value should be optimized for
the application.

80

9 CONCLUSION AND OUTLOOK

9 Conclusion and Outlook

9.1 Conclusion

The contributions of this work are manifold. Bellman’s GAP allows the deep integration
of Pareto front operators for the use with arbitrary products. For the first time, a deep
integration of Pareto into an ADP framework was realized, replacing existing specific or
only superficial implementations in dynamic programming. This facilitated the creation
and analysis of a collection of fully functional, entirely automatically generated Pareto
front operators that could be benchmarked against each other, creating novel insights on
their relations. It is now possible for users to optimize their applications by choosing from
a pool of ready to use, efficient implementations.

In this context, a systematic interface for changes to the standard implementation of
ADP has been proposed and realized for the Bellman’s GAP system. For this generalized
implementation major changes have been introduced to the framework. This novel concept
allowed the implementation of previously untested algorithms. Using the interfaces created
by the generalized implementation, new ADP definitions were implemented for the use
with Pareto optimization.

In lexicographically sorted ADP, intermediate candidate lists are kept sorted at all times.
Six algorithms with similar complexity but different properties that can exploit this prop-
erty for sorting were implemented and tested. The results were compared against a stan-
dard Quicksort implementation. An in place two way merge strategy we call S7 Merge
In-Place could be established that performs better than all other sorting algorithms, both
for random as well as realistic datasets. For the use with sorted ADP, the Pareto front
operator pflex could be established as the best choice. If applicable, sorted ADP should
always be preferred to sorting candidates in standard ADP.

In Pareto eager ADP, intermediate candidate lists are always kept as Pareto fronts. For
this, several new Pareto merge operators have been introduced and implemented, rein-
terpreting strategies of Pareto front operators used by the standard implementation of
ADP. The operator of

p

∨lex for two-dimensional products could be established as the only
effective implementation.

For the standard implementation of ADP, a new algorithm pfyuk was introduced and
optimized that performs well for Pareto fronts with more than two dimensions.

Among other changes, a series of new general concepts, such as comparators and multi-
dimensional products, have been created for future and current use. To efficiently handle
floating point accuracy throughout all implementations, a central comparison framework
was created for this purpose.

All implementations were tested under different real world applications of biosequence
analysis. We could show that a “naive” implementation using pfnosort in standard ADP
performs best in most cases. At the same time, we could show strong variations between
different applications of ADP, sometimes favouring Pareto eager

p

∨lex, if candidate lists
profit from sorting, sometimes favouring no specific implementations. pfyuk was shown
to perform well for long candidate lists on high-dimensional products. The effects of
the layout of the search space responsible for these differences have been highlighted. A
guideline for optimizations was established.

81

9 CONCLUSION AND OUTLOOK

For users of ADP, the use of Pareto optimization is now literally just a single keystroke
away. All implementations of Pareto operators created in this work can be easily accessed
using command line parameters. Although some optimizations have been left open, the
implementation of Pareto products in Bellman’s GAP can be regarded to be fully func-
tional. This stands as a strong propositions for the use of Pareto optimization with ADP.
The use in Bellman’s GAP is both simple and effective, regardless of modifying old or
creating new dynamic programming applications.

9.2 Outlook

To address the future of Pareto optimization in Bellman’s GAP, a few limitations of the
current implementations should be highlighted.

The biggest drawback of this work poses the restricted support of certain algebra product
definitions for sorted and Pareto eager implementations. We could demonstrate prob-
lematic formulations like classified dynamic programming, at the same time highlighting
general strategies on how to solve this problem in future. With the great performance of
pfnosort, however, there is no immediate need for extending both strategies and further
changes should only be attempted if absolutely needed. Nonetheless, a full reimplemen-
tation of the hashtable design of Bellman’s GAP is recommended, taking into account
candidate lists of arbitrary lengths and the requirements of the new generalized interface.

As a second big limitation, we saw that front sizes quickly become too big to compute
higher-dimensional products. Although this problem cannot be fully amended, we propose
the use of parallelization to lessen the impact. So far, only limited support exists for
parallelizing the recursions of the generated ADP programs, i.e. the iteration through the
search space. This will likely not change in near future due to the high complexity of
the programs. Instead, we suggest to only parallelize Pareto front operators. For pfyuk,
simple and intuitive strategies could be devised along its divide and conquer formulation.

So far, the generalized implementation of ADP was not fully disclosed to the users of the
framework. New implementations of ADP are also likely to invoke new code changes to
GAP-C. As such, the interfaces serve more as a guideline for future developers than for
the extension by end users. Although unlikely, should the need arise for this in future, the
interfaces could be opened by giving the users a handful of special generation options.

Both sorted ADP pflex and standard ADP pfyuk showed strong promise for special ap-
plications. Should the need for even faster strategies arise in future, so far untested
optimizations could be attempted. Examples for this are the use of a k-way merge [44]
instead of a fixed binary strategy, and the use of different median strategies for pfyuk,
respectively.

As a last further optimization, motivated by the superior behaviour of pfnosort, new im-
plementation strategies can be devised that try to maximize the positive effect of the ran-
domizations. One such algorithm would sort the candidate lists prior to calling pfnosort
by the volume they span in the search space, therefore relative by how likely they are to
dominate another candidate. Candidates that can likely dominate other candidates will
hence be processed guaranteed as early as possible.

It should be noted that this work was only concerned with the computation of Pareto
fronts, not, however, with the analysis and correctness – in the sense that they produce

82

9 CONCLUSION AND OUTLOOK

meaningful results – of them. The analysis of especially large Pareto fronts remains an
open problem that will be addressed in so far unpulished work.

Even after all the work done on this thesis, Pareto optimization never ceases to amaze
with its abundance of competing implementation strategies. The observations of this work
are expected to be also valid for the framework of inverse coupled rewrite systems [45],
which generalizes ADP to tree-structured data. A proof for this is open, however.

Many applications that could benefit from the use of Pareto optimization remain yet to
be re-evaluated.

83

References

[1] T. H. Cormen, C. Stein, R. L. Rivest, and C. E. Leiserson, Introduction to Algorithms.
McGraw-Hill Higher Education, 2nd ed., 2001.

[2] R. Bellman, Dynamic Programming. Princeton, NJ, USA: Princeton University Press,
1 ed., 1957.

[3] R. Giegerich, C. Meyer, and P. Steffen, “A discipline of dynamic programming over
sequence data,” Science of Computer Programming, vol. 51, no. 3, pp. 215–263, 2004.

[4] R. Giegerich and P. Steffen, “Implementing Algebraic Dynamic Programming in the
Functional and the Imperative Programming Paradigm,” in Mathematics of Program
Construction (E. Boiten and B. Möller, eds.), vol. 2386 of Lecture Notes in Computer
Science, pp. 1–20, Springer Berlin Heidelberg, 2002.

[5] P. Steffen, Compiling a domain specific language for dynamic programming. PhD
thesis, Bielefeld University, 2006.

[6] G. Sauthoff, Bellman’s GAP: A 2nd Generation Language and System for Algebraic
Dynamic Programming. PhD thesis, Bielefeld University, 2011.

[7] G. Sauthoff and R. Giegerich, “Yield grammar analysis and product optimization in a
domain-specific language for dynamic programming,” Science of Computer Program-
ming, vol. 87, July 2014.

[8] G. Sauthoff, M. Möhl, S. Janssen, and R. Giegerich, “Bellman’s GAP – a Language
and Compiler for Dynamic Programming in Sequence Analysis,” Bioinformatics,
vol. 29, no. 5, pp. 551–560, 2013.

[9] C. H. zu Siederdissen, “Sneaking Around concatMap: Efficient Combinators for Dy-
namic Programming,” in Proceedings of the 17th ACM SIGPLAN international con-
ference on Functional programming, ICFP ’12, (New York, NY, USA), pp. 215–226,
ACM, 2012.

[10] P. Steffen and R. Giegerich, “Versatile and declarative dynamic programming using
pair algebras,” BMC Bioinformatics, vol. 6, no. 1, p. 224, 2005.

[11] B. Voß, R. Giegerich, and M. Rehmsmeier, “Complete probabilistic analysis of RNA
shapes,” BMC Biology, vol. 4, no. 1, 2006.

[12] J. Branke, K. Deb, K. Miettinen, and R. Slowinski, eds., Multiobjective Optimization,
Interactive and Evolutionary Approaches [outcome of Dagstuhl seminars], vol. 5252
of Lecture Notes in Computer Science, Springer, 2008.

[13] C. Saule and R. Giegerich, “Pareto optimization in algebraic dynamic programming,”
Algorithms for Molecular Biology, vol. 10, p. 22, 2015.

[14] R. Durbin, S. R. Eddy, A. Krogh, and G. Mitchison, Biological sequence analysis.
Cambridge University Press, 1998.

[15] S. B. Needleman and C. D. Wunsch, “A general method applicable to the search for
similarities in the amino acid sequence of two proteins,” Journal of Molecular Biology,
vol. 48, pp. 443–453, Mar. 1970.

85

[16] O. Gotoh, “An Improved Algorithm for Matching Biological Sequences,” Journal of
Molecular Biology, vol. 162, pp. 705–708, 1982.

[17] S. Janssen and R. Giegerich, “The RNA shapes studio,” Bioinformatics, vol. 31, no. 3,
pp. 423–425, 2015.

[18] I. L. Hofacker, S. H. F. Bernhart, and P. F. Stadler, “Alignment of RNA base pairing
probability matrices,” Bioinformatics, vol. 20, no. 14, pp. 2222–2227, 2004.

[19] S. Bernhart, I. L. Hofacker, S. Will, A. Gruber, and P. F. Stadler, “RNAalifold:
improved consensus structure prediction for RNA alignments,” BMC Bioinformatics,
vol. 9, no. 1, p. 474, 2008.

[20] J. Reeder and R. Giegerich, “A Graphical Programming System for Molecular Motif
Search,” in Proceedings of the 5th International Conference on Generative Program-
ming and Component Engineering, GPCE ’06, (New York, NY, USA), pp. 131–140,
ACM, 2006.

[21] T. Getachew, M. Kostreva, and L. Lancaster, “A generalization of dynamic program-
ming for Pareto optimization in dynamic networks,” Revue Française d’Automatique,
d’Informatique et de Recherche opérationnelle. Recherche Opérationelle, vol. 34, no. 1,
pp. 27–47, 2000.

[22] S. Sitarz, “Pareto optimal allocation and dynamic programming,” Annals of Opera-
tional Research, vol. 172, pp. 203–219, 2009.

[23] T. Schnattinger, U. Schoening, A. Marchfelder, and H. Kestler, “Structural RNA
alignment by multi-objective optimization,” Bioinformatics, vol. 29, no. 13, pp. 1607–
1613, 2013.

[24] T. Schnattinger, U. Schoening, A. Marchfelder, and H. Kestler, “RNA-Pareto: inter-
active analysis of Pareto-optimal RNA sequence-structure alignments,” Bioinformat-
ics, vol. 29, no. 23, pp. 3102–3104, 2013.

[25] R. Libeskind-Hadas, Y.-C. Wu, M. Bansal, and M. Kellis, “Pareto-optimal phyloge-
netic tree reconciliation,” Bioinformatics, vol. 30, no. 12, pp. i87–i95, 2014.

[26] R. L. Graham, D. E. Knuth, and O. Patashnik, Concrete Mathematics: A Foundation
for Computer Science. Boston, MA, USA: Addison-Wesley Longman Publishing Co.,
Inc., 2nd ed., 1994.

[27] M. Yukish, Algorithms to identify Pareto points in multi-dimensional data sets. PhD
thesis, Pennsylvania State University, Graduate School, College of Engineering, 2004.

[28] A. Fog, “Optimizing software in C++: An optimization guide for Windows, Linux
and Mac platforms,” 2004.

[29] J. L. Bentley, “Multidimensional Divide-and-conquer,” Commun. ACM, vol. 23,
pp. 214–229, Apr. 1980.

[30] R. Sedgewick, “Implementing Quicksort Programs,” Commun. ACM, vol. 21, pp. 847–
857, Oct. 1978.

[31] G. S. Brodal, R. Fagerberg, and G. Moruz, “On the Adaptiveness of Quicksort,” J.
Exp. Algorithmics, vol. 12, pp. 3.2:1–3.2:20, Aug. 2008.

86

[32] K. Dudzinski and A. Dydek, “On a Stable Storage Merging Algorithm,” in Informa-
tion Processing Letters 12, pp. 5–8, 1981.

[33] E. P. Nawrocki, S. W. Burge, A. Bateman, J. Daub, R. Y. Eberhardt, S. R. Eddy,
E. W. Floden, P. P. Gardner, T. A. Jones, J. Tate, and R. D. Finn, “Rfam 12.0:
updates to the RNA families database,” Nucleic Acids Research, vol. 43, no. D1,
pp. D130–D137, 2015.

[34] J. D. Thompson, P. Koehl, and O. Poch, “BAliBASE 3.0: latest developments of the
multiple sequence alignment benchmark,” Proteins, vol. 61, pp. 127–136, 2005.

[35] P. Cordero, J. B. Lucks, and R. Das, “An RNA Mapping DataBase for curating RNA
structure mapping experiments,” Bioinformatics, vol. 28, no. 22, pp. 3006–3008, 2012.

[36] S. Janssen, G. Schudoma, Christian Steger, and R. Giegerich, “Lost in folding space?
Comparing four variants of the thermodynamic model for RNA secondary structure
prediction.,” BMC Bioinformatics, vol. 429, no. 12, 2011.

[37] T. Xia, J. J. SantaLucia, M. E. Burkard, R. Kierzek, S. J. Schroeder, X. Jiao, C. Cox,
and D. H. Turner, “Thermodynamic parameters for an expanded nearest-neighbor
model for formation of RNA duplexes with Watson-Crick base pairs,” Biochemistry,
vol. 37, pp. 14719–14735, 1998.

[38] S. Mortimer, C. Trapnell, S. Aviran, L. Pachter, and J. Lucks, “SHAPE-Seq: High-
Throughput RNA Structure Analysis,” Current Protocols in Chemical Biology, vol. 4,
no. 4, pp. 275–297, 2012.

[39] D. Loughrey, K. E. Watters, S. A. H., and L. J. B., “SHAPE-Seq 2.0: systematic
optimization and extension of high-throughput chemical probing of RNA secondary
structure with next generation sequencing,” Nucleic Acid Research, vol. 42, no. 21,
2014.

[40] W. A. Ziehler and D. R. Engelke, “Probing RNA Structure with Chemical Reagents
and Enzymes,” Current Protocols in Nucleic Acid Chemistry, 2001.

[41] S. E. Wells, J. M. Hughes, A. H. Igel, and M. J. Ares, “Use of dimethyl sulfate to
probe RNA structure in vivo,” Methods Enzymology, vol. 318, pp. 479–493, 2000.

[42] J. Talkish, G. May, Y. Lin, J. L. Woolford Jr., and C. J. McManus, “Mod-seq:
high-throughput sequencing for chemical probing of RNA structure,” RNA, vol. 20,
pp. 713–720, 2014.

[43] S. Janssen and R. Giegerich, “Ambivalent covariance models,” BMC Bioinformatics,
vol. 178, no. 16, 2015.

[44] W. Greene, “k-way merging and k-ary sorts,” in Applied Computing, 1991., [Proceed-
ings of the 1991] Symposium on, pp. 197–, Apr 1991.

[45] R. Giegerich and H. Touzet, “Modeling Dynamic Programming Problems over Se-
quences and Trees with Inverse Coupled Rewrite Systems,” Algorithms, vol. 7, pp. 62–
144, 2014.

87

A SUMMARY OF NEW GAP-C OPTIONS

A Summary of New GAP-C Options

All new options of the Bellman’s GAP compiler are listed in the following table:

Option Description

-P [--pareto-version] arg The Pareto front operator to use for computations:
• 0: pfnosort (Standard) / NOSORT
• 1: pflex with S1 Quicksort / SORT(1)
• 2: pfisort
• 3: pfyuk / NOSORT(B)

--no-coopt-class with backtrace, only print one candidate per element of
the front

--multi-dim-pareto set this token if a Pareto product with more than two
dimensions is defined

-c [--cut-off] arg set the cut-off size of pfyuk, if unset 65 is used

-S [--specialized-adp] arg The ADP implementation to use:
• 0: Standard ADP (Standard)
• 1: Sorted ADP with S7 Merge In-Place / SORT(7)
• 2: Pareto eager ADP

If Pareto eager ADP is chosen, the meaning of -P is mod-
ified:

• 0:
p

∨nosort / EAGER(unsorted)

• 1:
p

∨lex / EAGER(sorted)
• 2: -
• 3:

p

∨yuk

--step-mode arg Set the mode of the implementation if -S > 0:
• 0: block mode (standard)
• 1: step mode

-f [--float-accuracy] arg the number of decimal places to use for comparing floating
points

89

B ALGORITHMS

B Algorithms

B.1 Yukish and Bentley

Algorithm B.1 marry2D

INPUT: unsorted Pareto fronts X and Y , Y superior to X
OUTPUT: X without elements dominated from Y (in X ′)

sort X and Y
X ′
← ε

i← 0
j ← 0
(y1, y2)← Y [0]
while i < length(X) do ▷ Compare 1st Dimension

(x1, x2)←X[i]
if y1 ≥ x1 then

break

X ′
←X ′:(x1, x2) ▷ Add

i← i + 1

r ← 0
while i < length(X) do ▷ Compare 2nd Dimension

(r1, r2)← Y [r]
(y1, y2)← Y [j + 1]
(x1, x2)←X[i]
if j + 1 < length(Y) and (y1 > x1 or (y1 == x1 and y2 ≥ x2)) then

j ← j + 1
if y2 ≥ r2 then

r ← j

else
if x2 > r2 then

X ′
←X ′:(x1, x2) ▷ Add

i← i + 1

return X ′

Algorithm B.2 marrybrute
INPUT: unsorted Pareto fronts X and Y , Y superior to X
OUTPUT: X without elements dominated from Y (in X ′)
X ′
← ε

for all Xpre:(x1, . . . , xk):Xsuf do
add← true
for all Ypre:(y1, . . . , yk):Ysuf do

if y1 ≥ x1 and . . . and yk ≥ xk then ▷ Lazy
add← false
break

if add then
X ′
←X ′:(x1, . . . , xk) ▷ Add

return X ′

91

B ALGORITHMS

B.2 Sorting

Algorithm B.3 S4 In-Join

INPUT: unsorted list l of length N , array of list ends e pointing to M sublists,
array of list starts in s

OUTPUT: sorted list in l
sub←M − 1 ▷ Lists to pass
queue← empty sorted queue
it← N − 1 ▷ Global iterator
while true (unsorted) do

i← −1 ▷ Next worst element
for j = 0; j ≤ sub; j = j + 1 do ▷ Find worst element

if e[j] ≠ s[j] then
if i == −1 then

i← j
continue

if l[e[i]] > l[e[j]] then ▷ Full comparator
i← j

if i == −1 then ▷ No sublists
write queue to current positions it and left of it
return

if queue empty or l[e[i]] < next element in queue then
▷ List element worst, Full Comparator

if it ≠ e[i] then
if e[sub] == it then ▷ Store displaced element

push l[it] to queue
e[sub]← e[sub] − 1

l[it]← e[i]

e[i]← e[i] − 1
else ▷ Queue worst

if e[sub] == it then ▷ Store displaced element
push l[it] to queue
e[sub]← e[sub] − 1

l[it]← next element of queue

it← it − 1 ▷ Next elements
if it == s[sub] then

sub← sub − 1

if it < 0 then
return

92

B ALGORITHMS

Algorithm B.4 S5 Merge A, merge step

INPUT: unsorted list x of length l, index of last element of first list m
OUTPUT: sorted list in x
it← l − 1 ▷ Global iterator
cl ←m ▷ Left iterator
q ← empty queue ▷ Temporary Queue
while m ≠ it and x[m] > x[it] do ▷ Full comparator

it← it − 1 ▷ Next element

if m == it then ▷ End 1
return

push l[it] to q
l[it]← l[cl]
it← it − 1
cl ← cl − 1
if cl < 0 then ▷ End 2

while m ≠ it do
push l[it] to q
l[it]← next in q
it← it − 1

l[it]← next in q
return

▷ l[m] worse than l[it]
while m ≠ it do

if l[cl] > next of q then ▷ Full comparator
▷ Next in q worst

push l[it] to q
l[it]← next in q
it← it − 1

else ▷ Left iterator worst
push l[it] to q
l[it]← l[cl]
it← it − 1
cl ← cl − 1
if cl < 0 then ▷ End 2

while m ≠ it do
push l[it] to q
l[it]← next in q
it← it − 1

break

▷ Right list sorted
while cl ≥ 0 and q has element do

if l[cl] > next of q then ▷ Full comparator
▷ Next in q worst

l[it]← next in q
it← it − 1

else ▷ Left iterator worst
l[it]← l[cl]
it← it − 1
cl ← cl − 1

write q to it and left of it

93

Declaration of Authorship

I hereby certify that this thesis has been composed by me and is based on my own work,
unless stated otherwise. No other person’s work has been used without due acknowledge-
ment in this thesis. All references and verbatim extracts have been quoted, and all sources
of information, including graphs and data sets, have been specifically acknowledged.

Bielefeld, November 10, 2015

	List of Figures
	List of Tables
	Introduction
	Bellman's GAP
	Pareto Optimization
	Dynamic Programming in Bioinformatics
	Problem Statement

	Definitions
	Algebraic Dynamic Programming
	Products
	Implementation
	Lexicographically Sorted Implementation
	Pareto eager Implementation
	Generalized Implementation

	Integration in Bellman's GAP
	Arbitrary Dimensional Products
	Comparison Objects
	Comparing with Choice Functions
	Interfaces
	Step Mode
	Block Mode

	GAP-L
	GAP-C
	Pareto Products
	Comparators
	Lists
	Floating Point Accuracy
	Generalized Implementation
	Backtracing
	Algebra Characteristics

	GAP-M

	Computing Pareto Fronts
	Two-Dimensional Products
	Three- and More-Dimensional Products
	Optimization

	Algebra Products and their Influence on Candidate Lists
	Properties of Candidate Lists
	Candidate Reduction and Products

	Lexicographically Sorted ADP
	Sorting Algorithms
	Optimization

	Pareto eager ADP
	Floating Point Operations and Pareto Front Inaccuracies
	Pareto Merge Algorithms
	Optimization

	Benchmarks
	Setup
	Definition of ADP Tests
	Gotoh's Algorithm
	RNA Folding
	RNA Alignment Folding

	Influence of Pareto Dimensions and Floating Point Accuracy
	Optimizing pfyuk and pyuk
	Lexicographically Sorted ADP
	Randomized Trial
	Structured Trial

	Pareto eager ADP
	Putting it all together

	Conclusion and Outlook
	Conclusion
	Outlook

	References
	Summary of New GAP-C Options
	Algorithms
	Yukish and Bentley
	Sorting

