TCBB SUBMISSION 1

Semantics and Ambiguity of Stochastic RNA
Family Models

Robert Giegerich and Christiandder zu Siederdissen

Abstract

Stochastic models such as hidden Markov models or stochewtitext free grammars can fail to return the
correct, maximum likelihood solution in the case of sen@atnbiguity. This problem arises when the algorithm
implementing the model inspects the same solution in diffeguises. It is a difficult problem in the sense that
proving semantic non-ambiguity has been shown to be algoritally undecidable, while compensating for it (by
coalescing scores of equivalent solutions) has been shovire tNP-hard. For stochastic context free grammars
modelling RNA secondary structure, it has been shown tletlistortion of results can be quite severe. Much less
is known about the case when stochastic context free grasnmadel the matching of a query sequence to an
implicit consensus structure for an RNA family.

We find that three different, meaningful semantics can beda®d with the matching of a query against
the model — a structural, an alignment, and a trace semaffesn models correctly implement the alignment
semantics, and are ambiguous with respect to the other twargés, which are more abstract. We show how
provably correct models can be generated for the trace dermalfor approaches where such a proof is not possible,
we present an automated pipeline to cheokst factunfor ambiguity of the generated models.

We propose that both the structure and the trace semangéiagaath-while concepts for further study, possibly
better suited to capture remotely related family members.

Index Terms

RNA secondary structure, RNA family models, covariance et@dsemantic ambiguity.

. INTRODUCTION
A. Background: Semantics and ambiguity in stochastic nioglel

Stochastic modelsStochastic models are powerful and widely used technigmnesomputational
biology. In this article, we study covariance models impdéented by stochastic context free grammars
(SCFGs), which include hidden Markov models (HMMs) as a fagsc Let us start our discussion with
this simpler model.

An important application of HMMs in biosequence analysithis modeling of protein families. There,
aligned protein sequences are processed into family maaglemented as HMMs using the HMMer
package [7] and stored in the Pfam data base [2]. Running g/ g@guence against a model returns a
score that indicates the likelihood that the query belonghé sequence family. Scanning a long sequence
with the model reveals those regions that most likely sharewlutionary relationship with the model
family.

An application of similar importance is the modeling of stural RNA families. Models are generated
with the tool Infernal [8], [16] and accessed via the Rfam data base [9]. Here, arGSi@fplements a
covariance model of RNA sequences that share a consensusdseg structure. A “parse” of a query
sequence with the model grammar shows how well it matchedaimgly sequences, accounting for
sequence as well as structure conservation.

HMMs and SCFGs use quite a different nomenclature. Neviethe mathematically, HMMs are a
subclass of SCFGs — those cases where the context-free graomderlying the SCFG belongs to the

Robert Giegerich is with the Center of Biotechnology andRheulty of Technology at Bielefeld University, D-33615 Bield, Germany;
robert@techfak.uni-bielefeld.de

Christian Honer zu Siederdissen is with the Institute foedretical Chemistry, University of Vienna, Wahringeafe 17, 1090 Vienna,
Austria; choener@tbi.univie.ac.at 0000

TCBB SUBMISSION 2

subclass of regular grammars. Where the SCFG literatur¢l[8] uses the terminology of formal language
theory, such as grammars and parses, the HMM literaturengref terminology of transition rules and
paths. The CYK algorithm, which returns the highest scopargse according to a SCFG, is a generalization
of the Viterbi algorithm, which returns the highest scortngnsition path for an HMM. In this article,
we will build on the established SCFG terminology, becatisaakes the theory more general and also
because our immediate practical interest lies with comagamodels as used in Rfam.

Modeling semantic ambiguityThe problem of semantic ambiguity has been recently adeldeissa
series of papers. Giegerich [10] pointed out the problemsagdjested a suitable formalization: The parse
trees constructed by a SCFG parser represent some rea-olmdcts of interest, for example alternative
secondary structures for an RNA sequence. If some of thasegactually represent the same structure,
we have a case of semantic ambiguity. By specifying an exphapping of parses to a canonical (unique)
representation of our objects of interest, it may be possiblprove presence or absence of ambiguity.
The use of a canonical representation appears to be a ngcessension to the standard framework of
stochastic modeling, in order to deal with ambiguity in ateggatic manner. It plays the role of associating
a precise semantics to the parse trees (namely, the seactiuey represent), and coding this meaning
within the model is the key to tackling it computationally. The té'seamantic” ambiguity that we use in
this article catches this fact, and discerns it from symtanbiguity as studied in formal language theory.
In our case, syntactic ambiguity only means that a grammarspacify severatlifferentstructures for a
given sequence, which is a good thing rather than a probleconmbinatorial optimization. Note that in
textbooks covering SCFGs [1], [6], the pitfall of semantmakaguity has not yet been paid attention to,
and the most likely parse is taken for granted to indicatentiost likely structure.

Ambiguity — does it really matterDowell and Eddy [5] approached the ambiguity issue from
the pragmatic side and investigated whether it really matie practice. They compiled a number of
plausibility arguments, why one might hope that the mostljikparse somehow points to the most likely
structure, even in the presence of ambiguity. But then, tledyted such hopes: For two ambiguous
grammars, they tested how often the most likely parse retuhy the SCFG was different from the most
likely structure. For one grammar (G1), the result was wrémg20% of all tested sequences. For the
other grammar (G2), which was a refinement of G1 for the sakeetitr parameter training, the result
was wrong even for 98%. Dowell and Eddy provided a first ergirtest for the presence of ambiguity,
and continued studying parameter estimation for sevetairative, non-ambiguous grammars.

Algorithmic undecidability of semantic ambiguityfthe idea of ambiguity checking was further
worked out by Reeder et al. [17]. They gave a proof that, inegan presence or absence of semantic
ambiguity is formally undecidable. However, they conttdalia series of further techniques for ambiguity
checking, where the most powerful one involves translabbithe SCFG into a context-free grammar
generating the canonical representation introduced if [LBen, a semi-decision procedure such as a
parser generator may be able to demonstrate presence @ absence of ambiguity in many relevant
cases. The simple unambiguous grammars studied in [5] weneeg unambiguous in this mechanized
fashion. Moreover, the rather sophisticated grammar deslidpy Voss et al. for probabilistic shape analysis
[23] could also be proved non-ambiguous in a similar way. Stuely by Reeder et al. [17] also indicated
some techniques of avoiding ambiguity. However, there aseg where the expressiveness of the model
— the capability of adapting the parameters of the model toamihg set — may suggest to prefer a
semantically ambiguous grammar.

Algorithmic infeasibility of ambiguity compensatioi©an we still obtain the desired result when
the grammar is ambiguous? Such a case was studied in the HidMtlire by Brejova et al. [4] under
the name “path labeling problem”. In HMM modeling, the modskElf often is more refined than the
final result. For example, the gene structure of a sequentebeandicated by a labeling of residues
by E (exon) or | (intron) states. Yeast, for example, has tvasses of introns, “short” and “long”. The
stochastic model, in order to capture the length distrdsubf introns, requires several states to model
intronic residues. Therefore, several transition pathsuph the model may differ in their points of
transition between intronic states, while they lead to #mes path labeling and hence, indicate the same

TCBB SUBMISSION 3

gene structure. Here, the path labeling constitutes therceal mapping: Paths are equivalent when they
have the same labeling, and the HMM is semantically ambigwaoen this happens. Brejova et al. then
studied what we call ambiguity compensation: Can the algoribe modified such that all scores of paths
with the same labeling accumulate? Their main result wass thayeneral, this problem is NP-hard, and
hence, computationally infeasible. This does not rule bat ambiguity compensation may be practical
in restricted cases, but in general, we are better advisesldinl semantic ambiguity altogether.

Unresolved questionsFhere are three questions that were not addressed: (1) DemvekEddy studied
semantic ambiguity in principle, but worked with rather dregample grammars. Grammars such as those
underlying Rfam are much larger, and they do not simply assigtructure to an RNA sequence, but
they also relate it to the family model. It is unclear how tleengantics of a model should be defined. (2)
While methods for ambiguity checking in formal languageottyehave been advanced recently [3], the
step from a large, tool-generated SCFG to the context-fraengpar suitable for ambiguity checking is
still left open. (3) Are the models used in practice actualynantically unambiguous, and if so, based
on which semantics? These are the questions we will address.

B. Contributions of this article

This article provides a theoretical and a software-teaingontribution, and their application to Rfam
models.

On the theory side, we formally define three alternative seits for covariance models for RNA
families — astructure atrace, and amlignment semanticg\ll three of them have a well-defined biological
meaning, which is interesting to implement. Whether or npaeticular grammar is in fact semantically
ambiguous depends, of course, on the chosen semantics.dehsliv provably non-ambiguous models
with respect to the trace semantics can be constructed.

On the technical side, we provide an automated pipeline dcaepts a grammat, a canonical
representation mapping (written in a particular style)d pnoduces a gramma¥ which is syntactically
ambiguous if and only 7 is semanticallyambiguous. Connecting this pipeline to a (syntactic) ambyg
checker for context-free grammars, this automaesianticambiguity checking as far as its intrinsic
undecidability allows for it.

In the application, we apply our formalism to Rfam models. Wel that Rfam models faithfully
implement the alignment semantics, although their desonipgn the literature at one point suggests a
structure semantics. With respect to the trace semantieg,are ambiguous. In the conclusion, we argue
that both the structure and the trace semantics are wormefustudy, because they are more abstract and
may be better suited to capture remotely related family messb

The article is organized as follows: In Section Il we revieWawis known about semantics and ambiguity
of simple SCFGs as used for structure prediction, about guitlgichecking, and ambiguity compensation.
In Section Il we turn to family model grammars and find thagrthare three alternative ways to define
their semantics. In Section IV we describe precisely a neyerdhm of model generation for the trace
semantics and prove its correctness (i.e. non-ambiguitiyeofienerated models). In Section V we describe
a software for upward compilation and ambiguity checkingRédm models. This pipeline is applied in
Section VI. We conclude with a discussion of open resear@stipns which arise from our findings.

[1. A SUMMARY OF SEMANTIC AMBIGUITY THEORY

In this section, we review known results on the problem of @&tic ambiguity, and introduce the
formalism used later on. The only new contribution in thisagter is that the method for ambiguity
checking suggested in [17] has now been automated.

A. SCFGs and their semantic ambiguity

Context-free grammarsGiven an alphabetl of symbols,.A* denotes the set of all strings of symbols
from A, including the empty string. A context-free grammat> is a formal system that generates a

TCBB SUBMISSION 4
Gl: S —¢elaS|SalaSh|SS G5 S—e|aS|aSbS

Fig. 1. Grammars G1 and G5 taken from [5)].is the axiom and only nonterminal symbol in either grammaaand b denote arbitrary
bases out ofa,c, g,u}, as SCFGs allow non-standard base pairs (albeit with loveglility). Hence, a rule like5 — aSb is a shorthand

for 16 different rules.
: S
a S

t5

IANA

AN AN AN
/N AN AN
/| / N\ I

Fig. 2. Three derivation trees for the sequeneeug . t1 and¢2 are derived withG1, ¢5 is derived withG5.

language of strings oved. It uses a set’ of nonterminal symboJsone of which is designated as the
axiom Its derivation rules (productionshave the formX — «, whereX € V anda € (V U A)*. A
derivation of a terminal string) € A* starts from the axiom symbol, and in each step, replaces it 0
nonterminal symbols in the emerging string according to ohthe productionsxz Xy — xay may be a
chosen transition wheX — « is a production of7. Such a derivation can be represented uniquely in the
form of a tree, and by reversing the angle of view (from getiregaa string from the axiom to reducing
it towards the axiom), this tree is also called a parse tre® grammars are shown in Fig. 1 , and three
such parse trees are shown in Fig. 2. A gramma(sysitactically) ambiguoud there is a string that
has at least two different parse trees. It is a classicaltre§dormal language theory [12] that syntactic
ambiguity of context-free grammars is formally undecigaliThis means, there is no algorithm that can
decide presence or absence of ambigtotyall context-free grammars. However, there are semi-decision
procedures that return either YES, NO or MAYBE, which haveved quite powerful in practice [3].

Stochastic CFGsA stochastiacontext-free grammar augments each production rule witaresition
probability, such that the probabilities assigned witleraative rules for the same nonterminal symbol sum
up to 1. For rules which simply generate a terminal symbda,abksociated probability is called emission
probability. We do not distinguish these two types of prali#ds here. In a derivation, the probabilities
of all applied rules multiply. In such a way, a parse tteaf string x assigns a probability’(¢, =) with
x. The CYK algorithm, givenr, computes the parsg,.(z) = argmax{P(t,z) | t parse forz}.

SCFG semanticswhen modeling RNA structure, treemanticsSsc g of an SCFGG is defined as
follows: Each parse treeaccording toG associates an RNA secondary structfiger¢(t) with sequence
x: Terminal symbols (denoting RNA bases) produced in the ssteyewith productions like& — aSb are
considered base paired, while all other ones are considemedired. Denoting structures in the familiar
dot-bracket notation, we obsernf&crg(t1) = Sscrg(t2) = Sscrg(th) =".(.)." .

When there exist # t' but Sscrg(t) = Sscrg(t’) for grammarG, we say thatG is semantically
ambiguous This occurs with the treesl and¢2 for grammarG1 in Fig.2. There are no such trees with
G5. Hence,G1 is semantically ambiguous, whil@5 is an example of a non-ambiguous grammar.

With a semantically unambiguous grammar, the most likekg@also means the most likely structure
for = — this is exactly what we hope to find. If the grammar is sengafiyi ambiguous, the most likely

TCBB SUBMISSION 5

structures,,; may have several parses such that = Sscrg(ti1) = Sscrg(t2) = ..., with probabilities
p(ti,x),p(te, x), ..., andP(s,,) = >_; p(t;, x). In this situation, it is not guaranteed that one of the marse
t; has maximal probability, and some unrelated parse (indigat different structure), will be returned
by the CYK algorithm. For the gramma¢sl and G2 studied in [5} , this happens in 20% resp. 98% of
all test cases.

Many simple grammars can be specified for RNA structure thatret semantically ambiguous.
Different (non-ambiguous) grammars for the same problewe Hdifferent characteristics with respect
to the probability distributions they define. For exampl@mmarGh, attributed to Ivo Hofacker in [5], is
arguably the smallest grammar for the purpose. It has onlya2dmeters and showed “abysmal” modeling
performance in [5].

B. Embedding SCFGs in a more general framework

In order to deal with ambiguity checking and compensatiathbn theory and practice, we embed
SCFGs in the more general framework of algebraic dynamigraraming (ADP) [11]. This will allow us
to replace the probabilistic scoring scheme “hardwiredthia SCFG concept by other evaluation schemes,
or use several such schemes in combination. In our apmicatve will in fact generate equivalent ADP
code from Rfam models, to be used for a variety of differemppsaes aside from stochastic scoring.

Algebraic dynamic programmingStochastic models and algebraic dynamic programming serve
complementary purposes (while both rely on the same typeyofamic programming algorithms for
their implementation). ADP is designed to give the authomdDP algorithm maximal convenience —
high level of abstraction, re-usable components, and datign into efficient target code. Any type of
combinatorial optimization over sequences is possibleyiged that Bellman’s Principle of Optimality
holds. Grammars in ADP are produced by a human designer anty@ically small — at least compared
to grammars derived from data by stochastic modeling tobhese, in turn, come with a hard-wired
scoring scheme for maximizing probability or log-odds gsprand the capability to train the parameters
via expectation maximization. Many of the grammars autacaldy constructed by automated modeling
tools such adnfernal have probably never been inspected by a human eye.

The ADP formalism starts from aignature which is a supply of function symbdlsOne of these,
namedh by convention, designates the objective function, to bel usesubsequent analyses. The other
ones are placeholders for scoring functions.

For example, these are the signatures we will use withand G'5:

G1 G5

openl : AxV —V openr : Vx A—V open : AxV =V

pair : AxV xA—=V split:VxV -V pair : AXV X AXxV =V

nil - V h:[V]—[V] nil - V h:[V]—[V]

Here, A denotes the underlying sequence alphabetan arbitrary value domain, and’] a list of
values.

Grammars in ADP are tree grammarstr@e grammars analogous to a context free grammar, except
that the righthand side iX — « now is a tree, built from the function symbols of the signat(mther
thanh) at inner nodes, and nonterminal symbols as well as termsyrabols residing at the leaves of the
tree. Occasionally, we have a nullary function symbol, \Wwhaéso marks a leaf. Figure 3 shows the tree
grammar versions of G1 and Gb5.

The derivation with a tree grammar works as with CFGs, extegit now it produces a tree. It may
derive the same tree in different ways (syntactic ambigaftyree grammars), but this is easily avoided,

'Dowell and Eddy use the term “structural ambiguity” ratheart “semantic ambiguity”. This is consistent with our temoibgy, because
for simple SCFGs, a structural semantics is the only onehhatbeen considered so far. When we will turn to family mqddlsre will
be different semantics which can be employed. Again, thellebe a structural semantics, but it is not the one impleradrin today’s
modeling approaches.

2Java programmers may think of it as an interface

TCBB SUBMISSION 6

1
openl openr pair i . nil open pair
S%/\/\ /\ - /\//\\
!
!
a S S a a S b ! a s & s b S
split nil

VAN

Fig. 3. Tree grammar versions of string grammars G1 (left) @5 (right).

and besides, syntactic ambiguity is decidable for thissctafdree grammars. Therefore, we can assume
that each tree has a unique derivation (or tree-parsettaeh derived tree contains, as the string of its
leaf symbols, some sequengec A*. These trees represent the candidates in the combinaseaath
space associated with sequengeand in order to avoid the use of “tree” in too many connotejove
will henceforth refer to them asandidates

The introduction of a tree grammar, based on a signature raftiftns, seems like a minor, artificial
change of formalism, but has a profound impact: It decoufflescandidates which we analyze from the
grammar which generates them. There can be more functiotie isignature than there are productions
in the grammar, but normally, there are less. Different greams over the same signature can be used to
derive the same set of candidates. Candidates only reflectdignature — they bear no resemblance of
the derivation and the grammar which generated them. Oudidates:1,t2 andt5 as derived by the tree
grammars are shown in Figure 4.

The function symbols that constitute the inner nodes of draliate can be used to associate a variety
of meanings with each candidate. This is done by specifymgwaluation algebra- i.e. a data domain
and a set of functions (which compute on this domain), oneefmh function symbol in the signatdye
including h. Whatever evaluation we define will be computed by a geneM&-Gke algorithm. We do
not worry about implementation issues here, and denoterthlysis of input sequence with grammar
G and evaluation algebr& as a function callz(B, x).

SCFGs encoded in ADPTo run an ADP grammar as a SCFG, one simply provides an ei@uat
algebra which implements the function symbols in the sigreaby functions that compute probabilities.

Evaluation algebra PROB for G1:

h = maximum

pair(a,z,b) = pup*x split(x,y) = Dsplit * T * Y
openl(a,x) = pg*x nil() = Dnil
openr(x,a) = pg*x

The probability scoreg,, pas, Pspiit, Prir @re to be estimated from the data.
Evaluation algebra PROB for G5:

h = maximum
pair(a,x,b,y) = pep*T*Yy
open(a, x) = Do *T

Evaluating a candidate in this interpretation yields itshability score, akin to what is achieved by a
SCFG, if the candidate was a parse tree. This is how we exfiresaathematical equivalent of an SCFG
in ADP. Once we have the grammar in ADP form, we can use it foeopurposes besides stochastic
scoring.

3Java programmer may think of implementing the “interfadmit — please — with pure mathematical functions without siffiects.

TCBB SUBMISSION 7

t: split t2: split ! open
openl openr openl openr a pair
a pair nil g a nil pair g a u
open open
/TN /1IN AVEA
a openl u a openr u Cc nil g nil
nil C

Fig. 4. Candidategl,¢2 andt5, as derived by their tree grammatd and G5.

Encoding the canonical mappingiWe use a second evaluation algebra to encode the canonical
mapping of candidates to their “meanings”. Let us call it CAN
Evaluation algebra CAN for G1:

h = id

pair(a,z,b) = "(" +z+")" split(z,y) = x+vy
openl(a,z) = " -" +ux nil() = "™
openr(r,a) = x+" "

In algebra CAN, we define the functions such that they compiuten the candidate, the string
representation of its associated structure. In other waZdd\N implements the semanticc g for G1.
Operator+ here denotes string concatenation, adienotes the identity function.

Evaluating the G1-candidate$ and¢2 in the algebras PROB and CAN, we obtain

PROB(t1) = split(openl(a,pair(a, openl(c,nil),u), openr(nil,g)) = Psplit * Prit * Pau * Pa * Pe * Pg
PROB(t2) = split(openl(a,nil), openr(pair(a, openr(nil,c),u),g)) = Psplit * Prit * Pau * Pa * Pe * Pg
CAN(t1) = split(openl(a, pair(a, openl(c,nil),u), openr(nil,g)) =".(.)."
CAN(t2) = split(openl(a,nil), openr(pair(a, openr(nil,c),u),g)) =".()."

In this way, the structure — the meaning of our candidatesctwldecides about ambiguity — now
becomes part of our operational machinery. We can@allC’ AN, "aacug"”), and multiple occurences
of ".(.)." in the output witness the semantic ambiguity@f. We leave it to the reader to define an
analogous algebras PROB and CAN for the signature of G5. Aepgolwfeature of the ADP approach is
the use of algebra products (see [22] for the precise de@imitFor example, calling'5(PROB*xC AN, x)
will give us all the structures for: that achieve the maximum probability score. Since the gram@b
is semantically non-ambiguous, there may still be seveaatidates achieving maximal probability, but
they must all produce different structures as indicated BNCWhen the grammar is ambiguous (like
G1), neither of the optimal candidates may indicate the rikedy structure, as explained in Section IlI-A.
G1(PROB x CAN, z) returns the optimal candidates together with their assediatructures, possibly
delivering duplicates, but we cannot be sure if any of themotks the most likely structure.

C. Automated checking of semantic ambiguity

We now introduce a systematic and automated approach t@armbchecking. Consider a tree grammar
and a canonical mapping algebra which maps candidatesiigstver some alphabet. In this setting,
one can substitute the string composing functions of thebaly into the righthand sides of the tree

TCBB SUBMISSION 8
Gl: S—(9)].5]5.|85]¢

Fig. 5. GrammaiG1 derived from G1

productions. By partial evaluation, we eliminate the tressl righthand sides become strings over A.
Starting from the tree grammar G1, we rewrite its rules ittose of grammaé1, shown in Fig. 5.

Note that the first rule in1 is derived from 16 productions in G1, but since these are atiytu
exclusive due to their terminal symbols, only one corresiig rule is retained ir:1.

In this way, from our tree gramma¥ we obtain a context-free (string) gramm@rwith the following
property: R

Theorem 1 The tree grammag’ is semantically ambiguous if and only if the string gramniais
syntactically ambiguous. R

The proof of this theorem was given in [17]. At that time, themgmarG was handwritten — the
new aspect here is that it is now produced automatically filérand the canonical mapping algebra.
This is further described in Section V, where we present thelime cm2adpfor upward compilation of
Infernalgenerated models. Taking these constituents together —

1) the automated re-coding of an SCFG in ADP as a tree granimar

2) the specification of a unique string representation asriaal mapping algebr&’ AN,

3) the automated derivation of a string grammafrom G and C AN,
we are now in a state where we can take a SCFG and submit it tatamatic ambiguity checker.

The only step which is not automated is, of course, the spatifin of the canonical mappingAN.
Naturally, we must say at one point what the meaning of oudicites really is. However, for grammars
coming from the same modeling domain, this must be done omtg,0as the canonical mapping is the
same for all grammars. In this sense, the ambiguity checgipgline is completely automated now.

D. Ambiguity compensation

The canonical mapping defines (as its reverse image) a senegjptivalence relation on the evaluated
candidates. Ambiguity compensation means that all scordsrwthe same equivalence class should be
accumulated, rather than maximized over. Let us assumédéambment that we know how to accumulate
these scords We obtain an accumulating algebPaRO B,,.. from PROB by replacing the (maximizing)
objective functionh by the suitable accumulating functidn,... By calling G1(CAN % PRO B,),
we correctly compute the probabilities, accumulated over équivalence classes modultAN. So,
mathematically, ambiguity compensation is not a problemd ao additional programming effort is
required except for the coding @&f,...

However, we will experience an exponential slowdown of awgpam, consistent with the intractability
result of [4]. The asymptotic efficiency of the algorithm ieated by the number of equivalence classes
modulo C'AN, which must be computed in total — and their number is, in ggnexponential in the
length of the input sequence. Such an approach is feasibledderate length RNAs when equivalence
classes are defined via shape abstractions [23], but wh&N simply denotes feasible structures of the
input sequence, one cannot get very far by this (otherwise glegant) method.

IIl. SEMANTICS OF SCFGBASED FAMILY MODELS

In this section we turn our attention to SCFGs which descRidA family models, called family
model grammars for short. The previously developed SCF@itelogy is not sufficient to understand
their properties. In particular, we will find that there aneete reasonable, alternative semantics for family
model grammars.

“For example, log-probabilities must be re-converted imubpbilities in order to be added, which may cause numepmatlems.

TCBB SUBMISSION 9

A. From RNA folding SCFGs to family model grammars

There are three important differences between the SCFGsvthéand others) have used for explaining
SCFGs, and their use in family modeling.

Family model grammars encode a consensus struct@ammars likeG1 or G5 are unrestricted
RNA folding grammars. They will fold a sequence into all ke secondary structures according to the
rules of base pairing. This makes the grammars relativeblistraving one rule for every structural feature
considered by the scoring scheme, say a base pair or an edgzase. The scoring scheme evaluates
alternative parses and selects the result from the comfuktimg space of the query sequence.

This is different with grammars that model an RNA family wétparticular consensus structure The
consensus structure is “hard-coded” in the grammar. To show a concrete consemsashall use star and
angle brackets in place of dots and parenthesis,"e.g<* <* >>><*>+" _ This is only for clarity — there
is no difference, in principle, between the consensus addhary structures. For every position where
(say) a base pair is generated, the family model grammar lspecal copy of the base pair generating
production, with nonterminal symbols renamed. The general S — aSu becomesS; — aS;u for
each position where ana—u base pair is irC'. The transition parameter associated with this rule can be
trained to reflect the probability of an—w pair in this particular position. The type of grammar we have
seen before, therefore, only serves as a prototype fromhwguch position-specific rules are generated.

A family consensus structure of residues will lead to a model grammé&if- with kn productions,
wherek is a small constant. Hence, while folding a query with apprate lengthn and grammaiG1
would requireO(n?) computing steps, matching the sequence to the family granifparuns inO(n*)
time, simply because the size 6% is in O(n).

Family models restrict the folding space of the quedy:parse of a sequence in G indicates a
structure forz, but this structure is no longer a free folding: it is alwaysfi@amomorphic image ot’,
with some base pairings @f possibly missing, and some residues’opossibly deleted. Still, the paired
residues may be assigned to the bases of different ways; therefore, the structures assigned toy
different parses may vary slightly. This restriction of fleéding space to “lookalikes” of” is the second
difference between single sequence folding and family rogle

Family model grammars encode the alignment of a query to tresensus:The third, important
difference is thatz. implicitly aligns = to C'. For example, a base assigned an unpaired statusriay
represent one of three situations: It may (i) be matched targraired residue i, (i) be an inserted
base relative t@’, or (iii) be matched to a paired residuedn but without having a pairing partner in

These three situations are explicitly distinguisheddp, they are scored separately, and the CYK
algorithm returns the parse with maximal score based o tt@ssiderations. To achieve this, the prototype
grammar needs rules which take care of deletions, insestimd different types of matches.

Together, these three differences are central to our iskaenbiguity, and we summarize them in the
following
Fact Let M be a covariance model implemented by an SQF& which implicitly encodes the consensus
structureC. Then, parsinge with G finds an optimal alignment af with C' which implicitly designates
a structures, for x. This structures, is restricted to one of many possible homomorphic images of
obtained by deleting residues and dropping base pairingsff’. There are numerous other alignments
which assign the same structugg to =, whose (smaller) likelihood contributions are not reflectsy the
optimal alignment.

B. Prototype grammar and family model example

At this point the reader rightfully expects an example of atptype grammar and a family model
grammar generated from it. We show a prototype grammar etkrivom G5 and a toy family model
grammar generated from it.

TCBB SUBMISSION 10

A1 —>CI,A1|M1
M1 —>CLA2|M2
A2 —>CLA2|M2
M2 —>CI,A3bA5|CI,A3M5|MgbA5|M3M5
Ag —>CI,A3|M3
M3 —>CI,A4|M4
A4 —>CLA4|M4
M4 — &

A5 —>CI,A5|M5
M5 —>CI,A6|M6
AG —>CLA6|M6
M6 — &

Fig. 6. Family model grammafr.ys generated fronG5M for consensugy = " * <x >x "

The prototype grammar G5MWe extendG5 to obtain a prototype grammar5)M capable of
describing query alignments to a modél5M extendsG5 by rules modeling insertions, deletions and
matches. Againg andb stand for arbitrary bases.

GrammarG5M, the axiom isA.

A — aA | M
M —] aA | M|
GAbA | aAM | MbA | MM

From a purely syntactic point of view, this grammar appeaesrdy because the chain ruled — M
and M — M M together withM — ¢ allow for unbounded derivations that produee There is
no string in the language of this grammar which has a uniqué/at®n! Ignoring all rules except
{M—e¢, M— aA, M — aAb A} and mapping nonterminal symbalsand M to S, we are back at
G5. The other rules provide for insertions and deletions betwtte query and the model. Specialization
of G5M to the consensus+ <x>x" will yield the family model grammatr,,s. Its context-free core is
shown in Fig. 6 for shortness, but;,,; actually is a tree grammar using the same signature'/ay/.
Details of the generation algorithm are in Section IV.

To make our intentions explicit, we semantically enhanesgifammars by adding an evaluation function
interface.

Here is the signature:

fmat: AxV =V prI AXVxAxV =V
fins: AxV =V fLr: AXxV xV -V

faer: V=V fir: VXAXV =V
Joa: V fog: VXV =V
h: V] — [V]

Remember thatd denotes the underlying alphabet. The tree grammar versi6ivd/ is shown in Fig.
7

C. Three semantics for family model grammars

Matching a queryr against a family model should return the maximum likelih@odre of — what?
There are three possibilities, which we will explicate imsteection.

For the family models, derived fror@5M)/, we can use the same signature, except that the functions
get, as an extra first argument, the position in the consewstiswhich they are associated. Hence,
when specifying a semantics via an evaluation algebraGfab/, this implies the analog semantics for
all generated models, as they solely consist of positi@tigfized ruled from=5M.

TCBB SUBMISSION 11

A — fins M

RN

M — fnil \ fmat | f_del \

/ \A |

f PK \ f Lr \ f IR \ f bg
AN NN O

Fig. 7. Prototype gramma5M as a tree grammar. Functiorfs,q, fins and fqe; mark matches, insertions and deletions of unpaired
residues. Functiongprx, fr, fir, and fo; mark matches, partial, or total deletions of paired residnethe model.

The structure semanticsThe obvious idea is to ask for the highest scoring structssigaed tar.
This is in line with the semanticSsc g introduced for SCFGs previously. Here is the canonical rrapp
algebraC ANt

fmat(a/’ S) — 2 .77 + S fPK(a,, S’ b’ t) — 2 (77 + S + 77)77 _|_t
fins(a,s) =77 +s frr(a, s, t) =" +s+t
fdel(5> =S flR(S,b, t) = 8-'-”.” +t

it =" Jog(s,) =s+t

h =id

Here again,s andt denote strings derived from substructures, andenotes string concatenation.
andb are the concrete residues read in the quéry.V,;,.... maps residues of the quenyto their assigned
paired or unpaired status, while residues from the consews$ich are deleted (e.g. wheyg, applies)
produce no contribution to the output. Hence, the meaningngfcandidate evaluated WithA N, IS
simply a structure for: in dot-bracket notation.

The alignment semantic8¥ith the alignment semantics, we want to obtain the maximikeiihood
score of an alignment of the query to the consensus. This Inmsdmore refined than the structure
semantics, as a given query structure can be aligned to th&ensus in many different ways, and we
seek the most likely of those. Let us now formalize this idea.

For capturing the alignment semantics, we must use a caaaeigresentation that expresses not only
the structure assigned to, but also how it is aligned to the consensus structlireHence, it is an
alignment of two strings, the consensus structure and thetste assigned to the query. Both, naturally,
can be padded with gaps. The following are three differeighaients of a query sequence to the same
consensus:

(]_) *h K<kk - Kk Sk S- (2) *h Ko ko kk Sk D> (3) *h K<khk - Kk Sk So-
(o). I (e I (G-
Note that the upper line is always« <<#x+ >x>" when ignoring the gaps. This is because the
consensus is hard-coded in the model grammar. In contfestyuery structure i8.(......)." in
alignments (1) and (2), any(....)).." in alignment (3).

In defining the canonical mapping algelral NV,;;,,, for the alignment semantics, we use functions that
generate the alignment column-wise.

%In the implementation, unfortunately, we have to replaeentte two-letter columns by ASCII encodings.

TCBB SUBMISSION 12

Here is the canonical mappin@ANy;gy:

fmat(a’s> =" +s fPK(a787b7t) :”?”‘i‘s‘f‘”?”—l-t
fms(a,s) ="""+4s frlast) =745+ 4t
faet(s) =77+ fir(s,b,1) P
Fni =" fog(s,t) =727 p s 4t
h =1d

The trace semanticsOur third semantic idea results from the fact the good oldisege alignments
have an ambiguity problem of their own. Seen plainly as twmg$ arranged in columns, alignments
uniquely represent themselves. But sequence alignmemsfian interpreted as protocols of evolutionary
history, where both sequences have developed from a commoestar. Gaps mean insertions resp.
deletions, matches mean bases preserved by evolution, emiatches mean accepted point mutations.
In this interpretation, adjacent deletions and insertbmaot have a defined order. Classical bioinformatics
textbooks do not fail to point to this fact [20], [24]. Adjadedeletions or insertions may be represented
in either way,

X: ACAGGGG---CAC X: ACA---GGGGCAC
y: ACA----TTTCAC y: ACATTT----CAC,

denoting the same evolutionary history. “Alignments” wdh@nly matches and mismatches are specified,
and hence, adjacent deletions/insertions remain unatdare calledrracesin [20], and we will adopt
this naming. If a stochastic model assigns a probability 4f With each of the two alignments, this
corresponding trace has probability 0.2 (at least). We lzagase of semantic ambiguity, which must be
taken care of even in stochastic sequence alignment. Ting Rlehitecture of HMMer, for example, does
this in a drastic way by requiring at least one interveningamavhen switching between deletions and
insertion ([18]). This simply disallows adjacent delegoand insertions altogether (but also rules out
some plausible traces). It is easy to modify the alignmeotimmences (the grammar in our terminology)
such as in any such case, only one of the possible arrangemkatljacent insertions and deletions is
considered as a legal alignment [10]. The reduction is Bagmt: For the two sequences shown above, and
under the affine gap model, there are 396,869,386 alignmemeesenting only 92,378 different trates
Traces are considerably more abstract than alignments.

Returning to our covariance models, we observe the samégpnour family model grammars perform
both folding and alignment, and hence, they are also affidayethis source of ambiguity — at least if we
intend that final score designates the most likely evolatigrprocess that relates the query to the model.
The case even becomes more subtle. The following alignmgndlgnotes the same trace as alignment

(2):
(2) *k KoK Kk —mm Kk Sk D 4) *k <L Kk omm Ak S DS

() ()

What both alignments say is that a paired residue (at pas8)oin C' is deleted inx, while another
base is inserted im. As with plain sequence alignments, adjacent deletionsirs&ttions are unrelated;
their order is insignificant.

Hence, it makes sense to introducdrace semanticdor our family model grammars: We want to
obtain the maximum likelihood score of a trace, which uniguwtescribes an evolutionary process of
transforming the consensus into the query.

To capture this idea, we need to design another canonicabd’ A N;...., which maps these two
situations (2) and (4) above to the same, unique repregamtatet us adopt the canonization rule that
insertions must always precede adjacent deletions. Byulesboth alignments (2) and (4) are represented

5Computed with the ADP versions of classical dynamic progrémgy algorithms at http://bibiserv.techfak.uni-bielefele/adp/adpapp.html

TCBB SUBMISSION 13

nil open pair ni open pair

NN TN AN

Fig. 8. GrammaiG5 as a tree grammar for parsing sequences (left) and consetrsatures (right).

S—- S—

|
*

in the form of (4). The canonical mapping algelsral N,,.... is almost the same aSAN;,,, except that
deletions that appear to the left of an insertion are pusbete right.

AlgebraC AN, qce
AT 5 S NS
fmat(a,s) = - *s fPK(CL,S,b,t) ="("4+s+7)7 41
fins(a,s) =77 +s fir(a,s,t) =T g Iy
* < >
Jaer(s) ="_"ps Jir(s,b,1) ="_"ps+77 4+t
< >
Frit =77 fog(s,t) =" _T"ps+7_ ">t
h =1d
dv(a+s) = ifa="." thena + (d>s) elsed +a+ s
d>e =d

Wherever a deletion is issued, we have replaced simplegstamcatenation (+) by the operation

which moves the deletion to the right over any leading insest

The semantic hierarchyOur three semantics form a proper hierarchy — many alignsnesrespond
to the same trace, and many traces assign the same structine query. This also implies that a family
model which faithfully (unambiguously) implements thegalnent semantics is ambiguous with respect
to the trace semantics, and one which faithfully impleméméstrace semantics is ambiguous with respect
to the structure semantics, which is the most abstract oftires.

Which semantics to choose? When we are mainly interestedsimuature prediction for the query,
indicating why z may perform the same catalytic or regulatory function asftimily members, then
the structure semantics may be most appropriate. When wimtarested in estimating the evolutionary
closeness of the query to the family members, the trace d@naseems adequate. For the alignment
semantics, at the moment we see no case where it should lezrpeef

But — can we generate unambiguous family model grammars féinetetly compute either of the three
semantics?

IV. GENERATING NON-AMBIGUOUS FAMILY MODELS FOR THE TRACE SEMANTICS

In this section we show how family model grammars can be ggedrwhich are non-ambiguous with
respect to the trace semantics. This will also provide a elegsight on the meaning of the prototype
grammar. We proceed in the following steps: (1) We start flamon-ambiguous prototype grammar.
(2) We show how, given a consensus structitea model grammaé - is constructed which generates
alignments in the canonical form (insert-before-deleds)required for the trace semantics.. (3) We give a
proof that for anyC, G+ is non-ambiguous under the trace semantics. Here, we usergras5, because
it is the smallest non-ambiguous grammar. However, thergéing technique and proof carries over to any
non-ambiguous prototype grammar, which might be morediathan G5 from the parameter training
point of view.

The meaning of prototype grammarStarting fromG5, our prototype grammar i6&5M. We still
owe the reader the explanation why this grammar looks theitvdges. The key point ofz5M is that it
enforces the insert-before-delete convention. Only mamteal symbolA allows for insertions. Whenever
a nonterminal symbol stands in the left context of a deleteon)/ rather than amM is used.

TCBB SUBMISSION 14

The real understanding of the prototype grammar comes frafdilowing
Observation: The prototype grammaé/5M is a grammar that allows to align a query @l possible
models.

There is nospecificmodel encoded iG5M. This is why the grammar can be so small. But each
derivation with G5M not only assigns a structure to the query, but also impjicthcodes a model,
chosen by that derivation. This meaning of the prototypengnar can be made apparent by plugging the
definitions of C ANy, into the tree gramma&5M and evaluating a bit. The tree operators likg,; or
frk are replaced by string concatenations, and we obtain theg sframmarG5M

GrammarG5M; the axiom isA.

A — A | M
M — e| -A| M|
CATVA| TAM | “MZTA| M- M

This grammar transformation is not totally trivial becaa$¢he use of- in the definitions ofC' AN, .

But from the grammar, we observe that canonical stringwveérrom A/ cannot start with insertions. {,
while deletions (,~,”) are only applied beforé/. Hence, this grammar guarantees that the if-clause
in the definition of> is never positive, and the recursive callitalisappears. (Since the userois the
only difference betweel@' ANy,q.. and C ANy, transformingG5M with C AN, leads to the same
string grammaG5.M).

What does5M explain aboutz5M? Replaying any derivation ai*5) with the analog productions
of G5M produces the representation of a model-structure alighnTére top line displays the model
“chosen” in this derivation, the bottom line displays theusture assigned to the query. Considering only
the model string on the top line, we find that its is producedpbyductions analog ta/5, and hence,
any consensus structure is possible.

For example, running=5M on input”aa” produces an infinite number of model/query alignments.
This is correct, since models of any length can be alignednto sequence with a suitable number of
deletions. Disabling for a moment the rules which deleteaingl model residues or both residues in a

pair (i.e. the uses of,.,; and f,,), which are the sources of such infinity, the prototype gram@b .\
generates the following 23 alignments via the @M (C ANy ace, "aU"):

[CNPT s %" eSS eS<s>" DT <> TeS<s" eSS xS
" <> es<>" s eSS o>t X es" "> X s " ee>>"
"L T x> TesS<>"

Note that we see two alignments (labeled X) that satisfy tisert-before-delete convention, but not
their counterparts with delete-before-insert, which ibidden with the trace semantics. Let us summarize
our observations about the role of the prototype grammar.

Fact The prototype grammar describes, by virtue of its derivatjothe alignment of a query to all
possible consensi. Generating a specific family model gramamounts to restricting the prototype
grammar, such that all its derivations align the query to #@ne model consensus.

In other words, in a family model grammar for consensus sirec”’, the “upper line” in a derivation
always spells out.

Generating model grammars from consensus structu®e: construct a generator which reads a
CONSensus structur€ such as #x <<<sxx >>* >+ 7 and generates the gramméaib M- which
implicitly encodes alignments of a query sequenc® C. With the ADP method at our disposal, we
can use a variant of tree gramm@p to parseC', obtained by substituting for unpaired residues and
< and > for paired ones (cf. Fig. 8 (right)). Sina@5 is non-ambiguous and' is a concrete structure,
there will be only one tree. for C. We design an evaluation algebyanC'M which generates:/5M¢-

TCBB SUBMISSION 15

by evaluatingt.. For the sake of explanation, we will proceed in two stepsstRve design an algebra
genC F'G which generate&/5M as a context free grammar, to explain the logic of the algoritThen,
we modify genC' FG to genC' M which generates a tree grammar, i.e. executable ADP codbdanodel.

genC' FG has to take care of two issues. (1) It must generate copidseofules ofGG5M, specialized
to the specific positions ia'. Applying (say) ruleM — aAbA whena andb are at paired positionsand
J in C, respectively, will produce the specialized productidh— aA;1bA;1,. (2) genCFG must allow
for insertions and deletions without introducing ambiguBut this has already been taken care of in the
design ofG5M. As long asgenC' F'G only uses position-specialized copies of the rules fi@m/, this
property is inherited.

At this point, we can summarize our ideas as an evaluatioebadgienC' F'G which generates/5M ¢
from C as a context-free grammar:

Evaluation algebrgenC F'G; the value domain is sets of context-free productions:

nil(e;) = {Ai—aA; | M;, M; — e} (1)
open(a;,x) = xU{A; —a A; | M} (2
U{M; —a Aiyr | My} €))

pair(a;, z,bj,y) = zUyU{A, —a A, | M} 4)
UM — a A1 b Aj} %)

UM — a Ay My} (6)

UM; — M1 b Aja} (7)

UM, = My Mjtq} (8)

Here, subscripts denote the position where a particuladymtion is applied in the parse 6f. By default,
the axiom of the generated grammarsdis Our reader may verify: computing5(genC FG," * <*>x")
yields the grammaf oy5 shown in Fig. 6.

Finally, to produce executable codenC' M must generate a tree grammar rather than a string grammar,
in order to integrate the scoring functions. The rules ofdbetext-free grammar derived wigenC FG
are now associated with scoring functions from the sigmeatAs we cannot produce graphical output, a
tree build from function symbaof and subtrees, A, b, A is coded in the fornfi <<< a™ A" b™"A

Evaluation algebrgenC M; the value domain is sets of tree grammar productions writtieASCII:

nil(e;) = {Al = flins <<< a ™ A ||| M } 9)

U {M_i = f nilk<<empty } (20)

open(a;,x) = xzU{A_i = fins <<< a ™ A_i ||| M_i } (11)
U{M_i = f_mat <<< a ™~ A_i+1 ||| f_del <<< M_i+1 } (12)

pair(a;,x,b;,y) = xUyU{A_Il = f_ins <<< a ™ A_i ||| M_i } (13)
U{M_i=fPK<<<a™ A i+l ™ b ™ M_j+1 } (14)

U{M_i = f Lr <<< a ™ A_i+1 ™ M_j+1 } (15)

U{M_. = f IR <<< M_i+1 ™™ b ™ A_j+1 } (16)

U{M_i = f bg <<< M_i+1 ™~ M_j+1 } a7

Compared to our use of the same signature with (the nonaped) G5, all scoring functions take
as an implicit parameter, so calls to (sgyy), from different positions may be trained to assign different
probabilities.

Non-ambiguity of generated modeM/e want to prove next that our model generatdi\! (genC' M, C')
generates, for every consensus structuye family model grammar which is unambiguous with respect
to the trace semantics. The proof consists of two theorems:

Theorem 2 GrammarG5M is unambiguous with respect to the trace semantics.

TCBB SUBMISSION 16

We might strive for an inductive proof of this theorem, butcg we already have all the necessary
machinery in place, we use an automated proof technique.

From G5M we constructz5M as explained in Section 1I-C. We have already observed thakerived
alignments comply with the insert-before-delete-conentTherefore, the generated alignments in fact
denote traces. Remember tidgi)/ generates the same model-query alignment several timed ibaly if
G5M is syntactically ambiguous. We replace the fancy columnsibgle character encodings according
to the following table:

A
MIT ID|P[KIL[r [l [R]b g
This turnsG5M into the grammar

A —- "I"A | M (18)
M — ¢ (29)
M — "M”A | "D"M (20)
M — 7"PPA'K” A (22)
M — L7 A’r" M (22)
M — 7" MR’ A (23)
M — "0 M7¢" M (24)

which is proved unambiguous by tlaela ambiguity checker [3].

Q.E.D.

We can now show that by the generation algorithm, semanticamobiguity is inherited by the family
models grammars.

Theorem 3 Covariance models generated from a consensus structuby G5(genCM, C') are se-
mantically non-ambiguous under the trace semantics.

We note the following facts:

1) G5M is syntactically non-ambiguous (Theorem 2).

2) Each derivation inG5M describes an alignment of a query agasstemodel.

3) By construction, all these alignments observe the idseidre-delete convention.

4) Any derivation in a generated model gramnidrM can be mapped to a derivation@bM. This

is achieved by applying, for each production fré¥a M, the corresponding production without the
subscripts formz5M. This means that all derivatiors5M~ also observe the insert-before-delete
convention.

5) This mapping is injective. This holds because we can wtjgreconstruct the positional indices to
turn aG5 derivation back into a5 derivation, by keeping track of the number of symbols from
{M,D,P,K,L,l,R,r b, g} generated so far (but not countidd

6) Hence, ifG5M- was ambiguousiz5M would also be ambiguous, in contradiction to point (1).

Altogether, if there was a trace that had two different ddrons in G5M¢, it would also have two
different derivations inG5M. This is impossible according to point (1). Hence, a modehgnarG5M
generated byenC'M is always non-ambiguous with respect to the trace semantics
Q.E.D.

The correctness proof for the model generator here cryctdpends on the non-ambiguity of the
prototype grammar. When a prototype gramréais ambiguous, a sophisticated generator can still avoid
ambiguity in the generated models! However, in this caseoafgnight be difficult to achieve. If it fails,
we can still convert each generated modg} into the corresponding--, which can be submitted to
ambiguity checking. This is the situation we will encountdren turning towards the “real-world” models
in Rfam. There, we have an ambiguous prototype grammar ang@lassicated generation process, which

TCBB SUBMISSION 17

makes it hard to prove properties about. Therefore, we nguxipeourselves with an automated pipeline
for ambiguity checking of Rfam models.

V. THE AMBIGUITY CHECKING PIPELINE

Our ambiguity checking pipeline consists of three suceesstiages, nametim2adp adp2cfg andacla.

cm2adp: Upward compilation of Infernal generated covadamnodels:The upward compilecm2adp
accepts as input the table encoding a covariance model ajedeby Infernal. It translates it into the
constituents of a mathematically equivalent ADP algorithra tree grammar, a signature, and an imple-
mentation of the stochastic scoring algebra using the petemsigenerated bipfernal. Once available in
this form, additional evaluation algebras can be used ioeptd or jointly in products with the stochastic
scoring algebra. Such semantic enrichment was the mairoperpf developingm?2adp and its scope
will be described in a forthcoming paper. One of these appbos is the evaluation of the search space
under a canonical mapping algebra, as we do here.

adp2cfg: Partial evaluation of grammar and canonical mappialgebra: The adp2cfgprogram
is a simple utility implemented by Peter Steffen subsequeritL7]. It accepts a tree grammaét and
a canonical mapping algebr&, such that a call t@~(A, z) for some queryr, would enumerate all the
members of the search space (i.e. all parses) under theicahsining mapping. Provided that the algebra
Ais very simple and uses only string constants and contatenatip2cfgsucceeds with partial evaluation
to produce the context free (string) gramndasuitable for ambiguity checking according to Theorem 1.

acla: Ambiguity checking by language approximatioi$te acla program is an ambiguity checker for
context free grammars, based on the recent idea of ambigoégking via language approximations [3].
It has been used before, for example, on the grammar deslgn&dss for probabilistic shape analysis
of RNA [23]. Accumulating probabilities from the Boltzmardistribution of structures depends, just
like stochastic scoring, critically on semantic non-anultig (The Voss grammar encodes thermodynamic
scoring with correct dangles, and the structure semangipbes in composition with shape abstraction.)

Due to the undecidability of the ambiguity problem, ther@@asguarantee thatcla will always return
a definite answer. It may be unable to decide ambiguity foresoovariance models. However, since the
covariance models are larger, but less sophisticated tiagrammar by Voss, we are confident that the
formal undecidability of ambiguity will not be a practicabstacle in our context.

The overall pipeline:As all family model grammars derived from the same prototgmammar use
the same signature, the evaluation algebra implementiagcéimonical mappings for the structural and
the alignment semantic§; ANy, andC' AN,;q4,, is the same for all, as described above. Letdenote
a covariance model generated Imfjernal from consensus structurg, given inInfernals tabular output
format.

Let (G¢, PROB) = cm2adfM) be the ADP program equivalent ff, generated by upward compi-
lation.

Let G/c\ s = adp2cfdGo, CANg) be the context free grammar generated by partial evalyatbere
CANg is eitherC ANyt OF CANgiign,.

Then,acla(Gcs) € {Y ES, NO, MAY BE} demonstrates semantic ambiguity or non-ambiguitybf
with respect to the semantics

The trace semantics cannot be handleddy2cfgbecause the recursive auxiliary functiom C AN;,q..
can only be eliminated with an inductive argument. To dertrates (non-)ambiguity with respect to the
trace semantics, one shows (non-)ambiguity with respetig@lignment semantics plus (non-)observance
of a unigueness constraint such as the insert-beforeedetetvention.

VI. SEMANTICS OF RFAM FAMILY MODELS
A. Model construction with Infernal

In this section, we look at covariance models as generatethieynal. The difficulty here is that
the prototype grammar is ambiguous and we do not have a foilydl specification of the generation

TCBB SUBMISSION 18

algorithm. In order to create some suspense, we start withgotations. The original publication [8] of
1994 states:

“...we make the Viterbi assumption that the probability loé tmodel emitting the sequence is approximately
equal to the probability of the single best alignment of mddesequence, rather than the sum of all probabilities
of all possible alignments. The Viterbi assumption congatly produces a single optimal solution rather than a
probability distribution over all possible alignments.”

This points at an alignment or a trace semantics. In a moentegpdate, thénfernal Manual [15] touches
on the issue of semantic ambiguity in the description of tlogleh generation process, stating:

“This arrangement of transitions guarantees that (givengihide tree) there is unambiguously one and only
one parse tree for any given individual structure. This ipamant. The algorithm will find a maximum likelihood
parse tree for a given sequence, and we wish to interpretekidt as a maximum likelihood structure, so there
must be a one-to-one relationship between parse trees amduses.”

This seems to aim at a structure semantics, but since the stauoture can always be aligned to the
consensus (alias the “guide tree”) in many ways, theustalways be several parses for it, the scores of
which should accumulate to obtain the likelihood of the ctinee.

Infernal starts from an initial multiple sequence aligntand generates models in an iteration of
consensus estimation, model generation, and parameit@ntyaHere we are concerned with the middle
step, model generation from a given (current) consensus farily consensus structufe is determined
with an ambiguous grammar, parsing the multiple alignment @maximizing a mutual information score,
and then one (out of many) optimal parses is fixed as the “gu@k’. (In our construction, when’
is given, this is simply the unique parse ©f with tree grammaiG5.) This guide tree is then used to
generate productions by specializing the following prgpet grammar:

Grammar G, ferna taken from thelnfernal manual [15]:

State type Description Production Emission Transition
P (pair emitting) P — aYb e,(a,b) t,(Y)

L (left emitting) L —aY e,(a) t,(Y)

R (right emitting) R — Ya e,(a) t,(Y)

B (bifurcation) B—S8S 1 1

D (delete) D—Y 1 tu(Y)

S (start) S—Y 1 t,(Y)

E (end) E—e 1 1

Here,Y is any staté chosen from the nonterminal symbols (state types) in thenteft column. One
recognizes the rules of the ambiguad$ in the guise of{ P — aYb, L — aY,R — Ya,B — SS, F —
e}. The ambiguity inherent in a rule lik& — SS, parsingSSsS both as(55)S and S(SS) is not a
problem in model generation, because the specialized files S;S; are always unambiguous. However,
insertions can be generated both frérand R, possibly competing for the generation of the same unpaired
residues in the query.

Ginfernat 1S NOt really the complete prototype grammar in our sensepuies for partial matches of
base pairs in the consensus need to be added in the gengredimess. Overall, the generation method
appears too complicated to strive for a formal proof of narbaguity of the generated models.

B. Checking Rfam models

We have checked 30 models from Rfam, the 15 smallest mod#isand without a bifurcation in their
consensus structure, respectively. Model names and tbegetisus structures are listed in the appendix.
Here, we give a resume of our findings:

Theorem 4 In general, Rfam models are ambiguous with respect to thetstre semantics. They do
not assign a most likely structure to the query.

"The description in [15] uses a mixture of SCFG and HMM terrtogy.

TCBB SUBMISSION 19

This can be seen from testing with our pipeline, but is alssilg@een by inspecting the generated
models. Actually, alignments (1) and (2) in Section IlI-@ afready an example of ambiguity with respect
to the structure semantics, though only in principle, ay e not Rfam models. The explanation is that
althoughinfernal takes care that the structural ambiguity of the prototypengnar does not enter the
model grammar, it does not compensate for the fact that thee ssiructure (assigned to the query) is
aligned to the model in many ways. Hence, the score accoontkd structure associated with the optimal
alignment, which need not be the highest scoring structure.

Q.E.D.

Theorem 5 All tested Rfam models are non-ambiguous with respect taligpment semantics. There
is no evidence that this result should not carry over to Rfandels in general.

This observation was proved for some of the smallest modelswbmitting the grammag to the
ambiguity checker. For larger models, tH€' LA checker ran out of resources. We applied some surgery
by reducing successive stretches of either unpaired oeghagsidues (in the model) to stretches of at
most three such residues. This is correct as it has alreagly tested that the rules within such stretches
do not lead to ambiguity. After such surgery, th€’'L A checker succeeded for all models except Rf00161
and Rf00384.

For these two models, we resorted to the checking technicatbef than a proof) by use of a
non-ambiguous reference grammar, as suggested in [17]elfhave a reference grammar which
generates non-ambiguously the alignments of a query to ithen gnodel, then we can compare the
number of alignments produced by both grammars for a givpntitengtlf. The enormous size of the
search space provides strong evidence that, if the numbaligsgfments considered by both grammars
coincides, the tested model grammar is also unambiguousppty this technique, we modified the
G5-based model generator described above to generate fanoidielngrammars that are unambiguous
for the alignment semantics. Let us call them G5.Rf00161 @BdRf00384. We then checked, using an
evaluation algebr&OU N'T which simply counts the number of solutions generated, éguences: of
various lengths thaR f00161(COUNT,x) = G5.Rf00161(COUNT, x) and Rf00384(COUNT, x) =
G5.Rf00384(COUNT, x). For example, the value fdr:| = 10 is 357,718,985,217,153 (Rf00161) and
261,351,290,279,573 (Rf00384). For| = 20, it is 774,380,024,914,343,603,750,401 (Rf00161) and
416,290,325,523,207,008,752,681 (Rf00384), computddpendently by both models.

Q.E.D?

Theorem 6 In general, Rfam models are ambiguous with respect to tloe samantics.

This is implied by our previous observations, as each traceesponds to many alignments.
Q.E.D.

We also wondered whether the Rfam models could be tweakednpute the trace semantics rather
than the alignment semantics, simply by disabling some efgénerated transitions (and re-training the
parameters). Our upward compilation allows us to to elit@reertain transitions. We have been able to
reduce the number of alignments considerably, but we havdéonod a way to reduce it to the number
of traces.

C. A synopsis on RF00163 and RF01380

To give an impression of the degree of ambiguity observel wispect to structure and trace semantics,
we compute some data for RFO0163 and for RF01380, which arently the smallest Rfam models
with and without a bifurcatio. When counting structures for = 31, computational resources were

8Note that the number of alignments only depends on the lesigthodel and query, but not on the concrete query sequenden@non
the grammar which implements the model.

®Strictly, this is not proved but only tested for Rf00161 anf@384 , but note that by throwing more computational ressesiat the
problem, we can prove the remaining candidates nhonambgguenr practical concerns, and with an eye on the other madlexplicitly
studied here, a quick check by the counting method is moreoappte.

9The number of structures without a bifurcation fef = n is bounded from above bg™~*. The bound is sharp whem < 2(p + 1),
wherep is the number of base pairs in the model. For largethe restriction that the query cannot be assigned more fgise than the
consensus becomes effective. This is why we s@é'dor n = 12 and still cannot compute the exact number foe= 31.

TCBB SUBMISSION 20

exhausted, as in contrast to traces and alignments, we lapelpnomial time algorithm for counting
structures — for the same reasons as discussed with ambauitpensation.

Model RF00163 RF01380
CONSENSUY| <<SK<K<rkkrrkx <KKKhkkkkk DODShkk <KKKSODO>* SOO>D> | <<K<KK<K<K<Shrkx SS>% S>>>
length (size) 45 (31) 19 (12)
|x| = 12
structures 8,958 2,048
traces 35,330,137,025 141,120,525
alignments 715,114,268,248,12]L 35,330,137,025
|z| = 31
structures n.a. n.a.
traces 1,916,865,700,889,408,588,480 30,405,943,383,200
alignments 1,862,835,338,733,448,037,194,650,687 208,217,738,981,165,823

The numbers of structures, traces and alignments are piegperf the search space of a model/query
alignment, independent of which algorithm traverses tharch space. They have been computed twice,
and they perfectly agree between the upward comgdiernal models resulting frontm2adpand the
models generated by our method fra@ M. This can be taken as a strong indication that the two
approaches are equivalent in terms of the search spacesriéag. However, different grammars lead to
different numbers of parameters and will, in general, noegeivalent as stochastic models.

D. Ambiguity compensation, revisited

Can we, given the trained and upward-compiled Rfam moddig;iwcompute the log-likelihood score
according to the alignment semantics, use the same modélswaccumulating scoring function to obtain
the trace or the structure semantics? Mathematically, yésat was explained in Section 1I-D for the
simple stochastic context free grammars generally holdslfadynamic programming algorithms which
can be expressed in the ADP framework, and hence also for odelngrammars: Given gramméf, a
scoring algebra and an algebr& AN (i.e. C ANgiuet OF CANyace), just replace the maximizing objective
function of S by an accumulating function, yielding scoring algetsta.. Then call G(CAN x Sy, x).
The product algebrd&’ AN * S,.. maps all candidates to their equivalence classes underathenical
mapping, and performs accumulating scoring per class.rGilie ADP machinery, which provides a
generic implementation of the algebra product, ambigudgnpensation comes without reprogramming
efforts — but only in principle.

There are two obstacles to this elegant solution:

« In case of stochastic modeling, rather than multiplyingbatalities which tend towards zero as the
structure gets larger, one prefers to add their logarittibog. to the monotonicity of thég function,
the maximal log score still indicates the answer with maximprobability. However, substituting
maximization by accumulation, one needs to compute and lzlgriobabilities, potentially creating
numerical problems.

. Efficiency of computing withG(C AN % S,..,) depends on the number of canonical objects con-
structed, and as this number (in the case of covariance sjoideexponential in the length of the
guery, this is practical only for very short sequences andllsmodels. The implementation by a
product algebra will have efficiency @#(a"n*), wherea may be close to 1, but probably not close
enough. Our counting results on the small models RFO0163R&@1 380 indicate this.

VIlI. CONCLUSION
A. Summary of results

We have studied the problem of generating non-ambiguougyfanodels from consensus structures.
We clarified the notion of a semantics for family model gramsnand found that there are three well
motivated, alternative definitions: the structure, thedrand the alignment semantics.

TCBB SUBMISSION 21

We developed the generation algorithm for the trace sewsniihich, to our knowledge, has not been
studied before. Along the way, we found a nice explanatiothefprototype grammar as a grammar that
allows for an infinite set of derivations, describing thegafhent of the query tall possible models.
The generation process can then be described conciselghvaliows, for example, for a proof of non-
ambiguity of the generated models.

On the practical side, we have implemented the upward caiguil of Infernal generated models
to ADP. Here this step was used for connecting the Rfam madetsur ambiguity checking pipeline.
The upward compiled models, however, have other applicatad interest, which will be described in a
forthcoming study. But still, upward compilation from aatatically generated tables is an ad-hoc measure,
and in the long run, one could consider producing ADP coddHermodels directly when generated.

Also on the practical side, we have observed that the modeisrgted from=5M are considerably
smaller than the Rfam models. To extend the comparison, we ddao implemented @5-based generator
for (provably) unambiguous family model grammars and thignahent semantics. Applying both our
generators to Rf00163 and Rf01380, we can give concrete @rarf the blow-up factok (cf. Section
[1I-A). We evaluate the size of the generated grammars.

Model Model Rfam G5 (alignment) G5 (trace)
length/size| rules/nonterminals rules/nonterminals rules/nonterminals

Rf00163| 45/ 31 617 / 139 151/ 46 182/ 77

Rf01380| 19/ 12 282 / 59 66 / 20 78132

The factor (model length/number of rules) affects the metas a constant factor. It is about 14 for the
Rfam models, 3.4 for the models derived fr@#b with alignment semantics, and 4.1 f6i5)/-derived
models with the trace semantics. The factor (model sizefrmunof nonterminals) measures the space
requirements, as each nonterminal leads to a dynamic progirag table. Here, the respective factors are
4.6, 1.5, and 2.5, approximately.

B. Directions of future research

We shortly sketch some research questions which are raisedibfindings.

Investigation of the trace semantic3he trace semantics is new; it can be efficiently computed,
and possibly, the performance of covariance models can Ipeoirad. Such an improvement is likely
especially with respect to remote family members. This isabhgee, when model and query have about
the same length, one is likely to find a high-scoring alignimeithout adjacent deletions and insertions,
which is not affected by ambiguity. Remote family members/mequire more insertions and deletions,
some of them adjacent, and ambiguity strikes on a scale wikidxponential in the number of such
situations. With an eye on the present use of the alignmanastics in Rfam, this implies that good
scores can be taken as a strong indication of family memlgerstile low scores must be interpreted
with care, especially when model and query significantlyediin length.

Investigation of the structure semanticghe structure semantics has been used so far with simple
SCFGs, but not with family model grammars. The structureas#its seems appropriate when the goal
is to use the information in the family model to assign a cetermost likely structure to the query.
This structure would have to be experimentally probed ireotd verify that the query exacts the same
function as other family members.

However, in contrast to simple SCFGs, we do not know an efffieigethod to compute this semantics for
family model grammars. Ambiguity compensation, as showovapsuffers from a runtime complexity
dependent on the number of structures, which in turn growmmantially with the sequence length.
Efficient computation of the structure semantics is an @ging open challenge, where one must be
aware that a polynomial time exact algorithm may not exist.

An ideal modeling tool would allow the user to specify theemded semantics, either at model
generation time or when starting a search.

TCBB SUBMISSION 22

Smaller and faster modelsthe smaller size and better speed of models derived from & graenmar
such asG5 deserves further study. Its use may have been discourag#teliagnosis of the “abysmal”
performance of~5 reported in [5]. Dowell and Eddy explain this performancethy overloading of rules:

The compact grammag5, for instance, must invoke the same bifurcation réle- aSaS
for every base pair and for every structural bifurcation,iolthare quite different structural
features that occur with very different frequencies. Thedprctions ofG5 are thus “semantically
overloaded”: they collapse too may different types of infation into the same parameters.

But this explanation, appropriate as it is for simple SCF&sp points to a remedy for the case of family
model grammars. These grammars have position-specighmetlictions, and unless we tie parameters
together irrespective of their structural position in thedal, we can still train different and adequate
parameters for different features. This requires caraigireering and empirical testing, but small gram-
mars are still in the race. Note also that filtering techngquiich have been developed to speed up the
presentinfernalgenerated models can also be adapted to models generatedafdifferent prototype
grammar.

Comparing the performance of different prototype grammddswell and Eddy diagnosed superior
performance of another unambiguous SCK (vhich stems from Pfold [14]). However, this grammar
was not tested as the prototype for model grammar generddimen our compact algorithm of model
generation — the generator fraib is but 164 lines of ADP code — it maybe a justifiable effort teeexd the
Dowell and Eddy study to different model generators, tragnfiamily models rather than simple SCFGs.
We conjecture that our proof of a correct implementationhef trace (or the alignment) semantics could
be adapted for a new family model generator, as long as an higaous prototype grammar is used. If
not, there is still our ambiguity checking pipeline, whicdmcbe used to show correctness of the individual
models after their generation.

ACKNOWLEDGMENTS

The authors thank Peter Steffen for implementatip2cfgand Stefan Janssen for a careful reading and
valuable comments. The second author thanks Ivo Hofackerdimments, help and support. This work
has been funded, in part, by the Austrian GEN-AU projectrifmimatics integration network III.

APPENDIX
15 smallest models from Rfam without a bifurcation:

RF00032.cm
RF00037.cm
RF00180.cm
RF00390.cm
RF00453.cm
RF00502.cm
RF01072.cm
RF01080.cm
RF01081.cm
RF01082.cm
RF01112.cm
RF01115.cm

*xkxk KKK khkk SSSSSS kkkkk
LKL LK Hdr <K<K kkkkkok SSS>5>% >>5>5>>
<<x KKK < kxkrkk SSSSSS kkkkkkkkkkkkkkkhkk
KKK *kkkkkk >>>>

LKL LK LK Fxk <K< kkkrkhkdrs
*rkx <KL kxkkkhkk
LK kkkkkkkkkk
LKL LKL Fkkkkkkkkkk
LKL kkkkkkkk SSSSS kkkkkkkkk
<LK KKK *xkxkrx >>5>5>5>>>
KKK LK *Fxkkk SSS>>

<K< kkkkkkhk SO>S kkkkkkkkk

*kkkkhkK

SS>5>5>5>5>>>>
Sk SO kkkkk
S>> kkkkkkkkkkkkk

*kkkkkk SS>>>>>

K*kkkk

K*kkkk

RF01380.cm
RF01381.cm
RF01382.cm

LKL L K *kkk - SS>% S5>>
Tk KKK Hhkk DSOS dekkkkk
*x KKKKK*Fdk SSSSShkhk

15 smallest models from Rfam with a bifurcation:

TCBB SUBMISSION 23

(1]
(2]

(3]
(4]
(5]
(6]
g
(9]
[10]
[11]

[12]
[13]

[14]
[15]

[16]
[17]

[18]
[19]

[20]
[21]

[22]
(23]

[24]
[25]

RFO0008.Ccm * <<<<K<K<# KKKKKwhk SSSSShhdhhrs SKK<Kokkkkkkkk SSSSakk SSSSS>S*

RFO0O057.CmM #*xxxx <<K<KS<Sskkdx SSkkkkkokk SSk SSkk SSdkkkkkkk CLKLKLKLKLKL dkkkkk SSSSSOS kkkkkkk
RFO0161.cm <<<<#k K<KKKKKK sk DOSSSS>whk <<K<K< ok KK KKK K ek SSSSSSH SSSSkk S>>
RF00163.cm <<<KKK<Ksrrkark KKKKkkkkkk SODShakx <KKKSSSS * SS>>>>

RF00184.CmM #*xxxxx%* LKL hkkkhkkkk SO>S kkkkkk KL LK dkkkkkkkkkkkkk >SS>5>

RF00192.Ccm <<<K<K<K< kxxkkkkkk SO>S dkkkkkkkk LKL Fkkkkkkkkdkkk SS>S>S>S>
RF00384.cm #* <<<<KK<K<Kskkdrk SOSSSDSdhx KKK h <K<Kk KKKk DSOSk DSOS dekdekdkdokk
RFO0454.cm *xxkxxsk LK<k KK krkk DSkx SOSSHx <K<K * KK<Khkx SSS* Sk SO S kkkkkkkk
RFOOB517.CmM *xxkkxkkrx LKL dkkkkk SSSOSSHkk KKK kkkk SOSSSD kkkkk

RF0O0630.Cm #x#sxkkskksknx KKK wwk K<Kokkdrk SShkk SOOOSak KKKKKKKKKS shdkakx SSSSSSSSSS *
RF00681.cm <<<<<xx K<< KK KKK % KKKk DSOSk KKk DD SOSSSSSDSDD ko SDukk SSSS>
RF01068.cm <<<KKKKKK kDSOS DDDDD dekkdokkokdokdoksokk <LKk SS>S>>

RF01116.cm <<<KKKKKKHddx DSOS dekkdokkokdokdokdokdoksokk <KL wxdokk SSSSSS> kk
RF01388.cm #* <<#wxdxx <K<Kk SODOSwdnk SOKKKKKKK wbdobk SDSSSDDD dekerkok

RF01403.cm <<<#*x <<KKKKKK kkkkkhsors SSSSSSS kkkk DSOShkkk KKKKKKKK kkgkkk DSDDDSDSSSS dekkkk

REFERENCES

P Baldi and S BrunakBioinformatics — the machine learning approaddliT Press, 1998.

A Bateman, E Birney, L Cerruti, R Durbin, L Etwiller, S R By, S Griffiths-Jones, K L Howe, M Marshall, and E L Sonnhammer
The Pfam protein families databadducleic Acids Res30(1):276-280, Jan 2002.

Claus Brabrand, Robert Giegerich, and Anders Mglleralfning Ambiguity of Context-Free Grammars. Rroc. 12th International
Conference on Implementation and Application of Autom@@&A '07, July 2007.

Broha Brejova, Daniel G. Brown, and Toma$ Vinaf. €Tlmost probable annotation problem in HMMs and its applicatio
bioinformatics. Journal of Computer and System Scienc&(7):1060-1077, March 2007.

R D Dowell and S R Eddy. Evaluation of several lightweightchastic context-free grammars for RNA secondary stragtrediction.
BMC Bioinformatics 5:71-71, Jun 2004.

R Durbin, S Eddy, A Krogh, and G MitchisorBiological Sequence Analysi€ambridge University Press, 2006 edition, 1998.

S R Eddy. Profile hidden markov modelBioinformatics 14(9):755-763, 1998.

Sean R. Eddy and Richard Durbin. RNA sequence analysigyusovariance modelsNucleic Acids Res22(11):2079-2088, June
1994.

P P Gardner, J Daub, J G Tate, E P Nawrocki, D L Kolbe, S Liedg, A C Wilkinson, R D Finn, S Griffiths-Jones, S R Eddy, and
A Bateman. Rfam: updates to the RNA families databaacleic Acids Res37(Database issue):136-140, Jan 2009.

R. Giegerich. Explaining and controlling ambiguity dgnamic programming. Iroc. Combinatorial Pattern Matching/olume 1848
of Springer Lecture Notes in Computer Scienpages 46-59. Springer, 2000.

Robert Giegerich, Carsten Meyer, and Peter Steffen.isgipline of dynamic programming over sequence d&aence of Computer
Programming 51(3):215-263, June 2004.

J E Hopcroft and J D UlimanFormal languages and their relation to automatAddison-Wesely, 1969.

S. Janssen, J. Reeder, and R. Giegerich. Shape basedhimdor faster search of RNA family databas&MC Bioinformatics 9:131,
2008.

B Knudsen and J Hein. Pfold: RNA secondary structuredigt®n using stochastic context-free grammarducleic Acids Res
31(13):3423-3428, Jul 2003.

Sean Eddy LabINFERNAL User’'s Guide. Sequence analysis using profilesN#& Becondary structureversion 1.0 edition, January
2009. http.//infernal.janelia.org.

E P Nawrocki, D L Kolbe, and S R Eddy. Infernal 1.0: infece of RNA alignmentsBioinformatics Mar 2009.

Janina Reeder, Peter Steffen, and Robert Giegeridhctitfe ambiguity checking in biosequence analyBMC Bioinformatics 6(153),
2005.

Eddy S. Hmmer user’s guide. Technical report, Howardjres Medical Institute, 2003.

Y Sakakibara, M Brown, R Hughey, | S Mian, K Sjolander(RUnderwood, and D Haussler. Stochastic context-free gi@sirior
tRNA modeling. Nucleic Acids Res22(23):5112-5120, Nov 1994.

D Sankoff and Kruskal JTime warps, string edits, and macromoleculégldison-Wesley, 1983.

J A Smith. RNA search with decision trees and partialas@nce modelslEEE/ACM Transactions on Computational Biology and
Bioinformatics 6, 2009. electronic pre-release.

Peter Steffen and Robert Giegerich. Versatile andatative dynamic programming using pair algebsIC Bioinformatics 6(1):224,
September 2005.

B Voss, R Giegerich, and M Rehmsmeier. Complete prdistibi analysis of RNA shapeBMC Biol, 4:5-5, 2006.

M Waterman.Introduction to computational biologyChapman & Hall, 1994.

Z Weinberg and W L Ruzzo. Sequence-based heuristicaéoer annotation of non-coding RNA familieBioinformatics 22(1):35-39,
Jan 2006.

