
Explaining and Controlling Ambiguity in

Dynamic Programming

Robert Giegerich

Faculty of Technology, Bielefeld University

33501 Bielefeld, Germany

robert@techfak.uni-bielefeld.de

Abstract. Ambiguity in dynamic programming arises from two inde-

pendent sources, the non-uniqueness of optimal solutions and the partic-

ular recursion scheme by which the search space is evaluated. Ambiguity,

unless explicitly considered, leads to unnecessarily complicated, in
ex-

ible, and sometimes even incorrect dynamic programming algorithms.

Building upon the recently developed algebraic approach to dynamic

programming, we formalize the notions of ambiguity and canonicity. We

argue that the use of canonical yield grammars leads to transparent and

versatile dynamic programming algorithms. They provide a master copy

of recurrences, that can solve all DP problems in a well-de�ned domain.

We demonstrate the advantages of such a systematic approach using

problems from the areas of RNA folding and pairwise sequence compar-

ison.

1 Motivation and Overview

1.1 Ambiguity Issues in Dynamic Programming

Dynamic Programming (DP) solves combinatorial optimization problems.

It is a classical programming technique throughout computer science [3],

and plays a dominant role in computational biology [4, 10]. A typical DP

problem spawns a search space of potential solutions in a recursive fash-

ion, from which the �nal answer is selected according to some criterion

of optimality. If an optimal solution can be derived recursively from op-

timal solutions of subproblems [1], DP can evaluate a search space of

exponential size in polynomial time and space.

Sources of Ambiguity. By ambiguity in dynamic programming we refer

to the following facts which complicate the understanding and use of DP

algorithms:

{ Co-optimal and near-optimal solutions: It is well known that the \op-

timal" solution found by a DP algorithm normally is not unique, and

there may be relevant near-optimal solutions. A single, \optimal"

answer is often unsatisfactory. Considerable work has been devoted

to this problem, producing algorithms providing near-optimal [15, 17]

and parametric [11] solutions.

{ Duplicate solutions: While there is a general technique to enumerate

all solutions to a DP problem (possibly up to some threshold value)

[21, 22], such enumeration is hampered by the fact that the algorithm

may produce the same solution several times { and in fact, this may

lead to combinatorial explosion of redundancy. Heuristic enumeration

techniques, and post-facto �ltering as a safeguard against duplicate

answers are employed e.g. in [23].

{ (Non-)canonical solutions: Often, the search space exhibits additional

redundancy in terms of solutions that are represented di�erently, but

are equivalent from a more semantic point of view. Canonization is im-

portant in evaluating statistical signi�cance [14], and also in reducing

redundancy among near-optimal solutions.

Ambiguity examples. Strings aaaccttaa and aaaggttaa are aligned be-

low. Alignments (1) and (2) are equivalent under most scoring schemes,

while (3) may even be considered a mal-formed alignment, as it shows

two deletions separated by an insertion.

aaacc--ttaa aaa--ccttaa aaac--cttaa

aaa--ggttaa aaagg--ttaa aaa-gg-ttaa

(1) (2) (3)

In the RNA folding domain, each DP algorithm seems to be a one-trick

pony. Di�erent recurrences have been developed for counting or estimat-

ing the number of various classes of feasible structures of a sequence of

given length [12], for structure enumeration [22], energy minimization

[25], and base pair maximization [19]. Again, enumerating co-optimal an-

swers will produce duplicates in the latter two cases. In [4](p. 272) a

probabilistic scoring scheme is suggested to �nd the most likely RNA

secondary structure { this is a valid idea, but will work correctly only if

the underlying recursion scheme considers each feasible structure exactly

once.

Our main contributions. The recently developed technique of algebraic

dynamic programming (ADP), summarized in Section 2, uses yield gram-

mars and evaluation algebras to specify DP algorithms on a rather high

level of abstraction. DP algorithms formulated this way can have all the

ambiguity problems illustrated above. However, the ADP framework also

helps to analyse and avoid these problems.

1. In this article, we devise a formal framework to explain and reason

about ambiguity in its various forms.

2. Introducing canonical yield grammars, we show how to construct a

\master copy" of a DP algorithm for a given problem class. This single

set of recurrences can correctly and e�ciently perform all analyses

in this problem class, including optimization, complete enumeration,

sampling and statistics.

3. Re-use of the master recurrences for manifold analyses provides a ma-

jor advantage from a software-engineering point of view, as it enhances

not only programming economy, but also program reliability.

2 A Short Review of Algebraic Dynamic Programming

ADP introduces a conceptual splitting of a DP algorithm into a recog-

nition and an evaluation phase. A yield grammar is used to specify the

recognition phase (i. e. the search space of the optimization problem). A

particular parsing technique turns the grammar directly into an e�cient

dynamic programming scheme. The evaluation phase is speci�ed by an

evaluation algebra, and each grammar can be combined with a variety of

algebras to solve di�erent problems over the same data domain, for which

heretofore DP recurrences had to be developed independently.

2.1 Basic Notions

Let A be an alphabet. A� denotes the set of �nite strings over A, and ++

denotes string concatenation. Throughout this article, x; y 2 A� denote

input strings to various problems, and jxj = n. A subword is indicated by

its boundaries { x(i;j) denotes xi+1:::xj .

An algebra is a set of values and a family of functions over this set.

We shall allow that these functions take additional arguments from A�.

An algebraic data type T is a type name and a family of typed function

symbols, also called operators. It introduces a language of (well-typed)

formulas, called the term algebra. An algebra that provides a function for

each operator in T is a T -algebra. The interpretation t
I
of a term t in

a T -algebra I is obtained by substituting the corresponding function of

the algebra for each operator. Thus, t
I
evaluates to a value in the base

set of I.

Terms as syntactic objects can be equivalently seen as trees, where

each operator is a node, which has its subterms as subtrees. Tree gram-

mars over T describe speci�c subsets of the term algebra. A regular tree

grammar over T [2, 7] has a set of nonterminal symbols, a designated

axiom symbol, and productions of the form X ! t where X is a nonter-

minal symbol, and t is a tree pattern, i.e. a tree over T which may have

nonterminals in leaf positions.

2.2 ADP { the Declarative Level

structure
Simple hairpin

��
��
��
��

c

c

u g

u

��
��
��
��

g

a

g

g

ua a

��
��
��
��

a

In the sequel, we assume that T is some �xed

data type, and A a �xed alphabet. As a run-

ning example, let A = fa, c, g, ug, represent-

ing the four bases in RNA, and let T consist of

the operators sr, hl, bl, br, il, represent-

ing structural elements in RNA: stacking re-

gions, hairpin loops, bulges on the left and right

side, and internal loops. Feasible base pairs are a

- u, g - c, g - u. The little hairpin denoted

by the term
Hairpin in

representation
term

sr

c

aaa

gugu

g

c

hl

a u

sr

bl

g

s = sr 'c' (sr 'c' (bl "aaa" (hl 'a' "gugu" 'u')) 'g') 'g'

is one of many possible 2D structures of the RNA sequence ccaaaaguguugg.

De�nition 1 (Evaluation Algebra). An evaluation algebra is a T -

algebra augmented by a choice function h. If l is a list of values of the

algebra's value set, then h(l) is a sublist thereof. We require h to be poly-

nomial in jlj. Furthermore, h is called reductive if jh(l)j is bounded by a

constant.

The choice function is a standard part of our evaluation algebras be-

cause we shall deal with optimization problems. Typically, h will be min-

imization or maximization, but, as we shall see, it may also be used for

counting, estimation, or some other kind of synopsis. Non-reductive choice

functions are used e.g. for complete enumeration. The hairpin s evaluates

to 3 in the basepair algebra, and (naturally) to 1 in the counting algebra:

basepair_alg = (sr,hl,bl,br,il,h) counting_alg = (sr,hl,bl,br,il,h)

where sr _ x _ = x+1 where sr _ x _ = x

hl _ x _ = 1 hl _ x _ = 1

bl _ x = x bl _ x = x

br x _ = x br x _ = x

il _ x _ = x il _ x _ = x

h = maximum h = sum

De�nition 2 (Yield Grammar). A yield grammar (G; y) is given by

{ an underlying algebraic datatype T , and alphabet A,

{ a homomorphism y : T ! A� called the yield function,

{ a regular tree grammar G over T .

L(G) denotes the tree language derived from the axiom, and Y(G) :=

fy(t)j t 2 L(G)g is the yield language of G.

The homomorphism condition means that y(Cx1:::xn) = y(x1)++:::++y(xn)

for any operator C of T . For the hairpin s, we have y(s) = ccaaaaguguugg.

By virtue of the homomorphism property, we may apply the yield func-

tion to the righthand sides of the productions in the tree grammar. In this

way, we obtain a context free grammar y(G) such that Y(G) = L(y(G)).

De�nition 3 (Yield Parsing). The yield parsing problem of (G; y) is

to compute for a given s 2 A� the set of all t 2 T such that

y(t) = s.

De�nition 4 (Algebraic Dynamic Programming). Let I be a T -

algebra with a reductive choice function h
I
. Algebraic Dynamic Program-

ming is computing for given s 2 A� the set of solutions

h
I
ft
I
j y(t) = sg in polynomial time and space.

This de�nition precisely describes a class of DP problems over sequences.

All biosequence analysis problems we have studied so far fall under the

ADP framework. Outside the realm of sequences, DP is also done over

trees, dags, and graphs. It is open whether the concept of a yield grammar

can be generalized to accommodate these domains. A detailed discussion

of the scope of ADP is beyond the space limits of this short review.

2.3 ADP { the Notation

Once a problem has been speci�ed by a yield grammar and an evalua-

tion algebra, the ADP approach provides a systematic transition to an

e�cient DP algorithm that solves the problem. To achieve this, we intro-

duce a notation for yield grammars that is both human readable and |

executable! In ADP notation, yield grammars are written in the form

hairpin = axiom struct where

struct = open ||| closed

open = bl <<< region ~~~ closed |||

br <<< closed ~~~ region |||

il <<< region ~~~ closed ~~~ region

The grammar hairpin has axiom struct and further nonterminal sym-

bols open, closed. base denotes an arbitrary base, and region a non-

empty sequence of bases from the RNA alphabet. The grammar notation

is re�ned further by allowing predicates and the choice function to be

associated with nonterminals symbols and productions:

closed =

((hl <<< base ~~~ (region `with` minsize 3) ~~~ base |||

sr <<< base ~~~ (closed ||| open) ~~~ base) `with` basepair) ... h

This production uses two predicates: minsize k requires a yield of min-

imal length k, and basepair applies to both alternatives, requiring that

the bounding bases of either closed structure form a feasible base pair.

The choice function h is attached via the ...-combinator, indicating that

from several alternative closed structures, a selection according to h is

imposed.

In the syntactic view of yield grammars, we interpret the operators

hl, sr,... in the term algebra. They merely construct terms or trees

representing hairpins. In this view, the choice function h has little use and

should be assumed to be the identity function. However, in a more se-

mantic view, we see hl, sr,... as functions of some evaluation algebra.

Then, the \trees" generated by the grammar are actually formulas that

can be evaluated. In this view, the grammar is a mechanism to generate

a set of values, and it makes sense to apply the algebra's choice function

to select (say) a maximal one.

2.4 ADP { the Implementation Level

We now solve the yield parsing problem. A nondeterministic, top-down

parser for a context-free grammar is easily obtained by the combinator

technique of [13]. This idea is adapted to yield grammars. A yield parser

pN for nonterminal N takes a subword (i; j) of x as its argument and

returns the set pN(i; j) = ftjy(t) = x(i;j)g. Technically, it returns a list;

when the list is empty, we say that the parser fails. Where the operators

of T take strings from A� as their arguments, suitable parsers must be

provided.

The grammar itself is turned into a parser by de�ning the combinators

as higher-order functions which compose complex parsers from simpler

ones. For the sake of completeness, de�nitions are given here, but space

does not allow a thorough discussion. We use list comprehension notation

borrowed from the functional programming language Haskell.

(r ||| q) (i,j) = r(i,j) ++ q(i,j)

(f <<< q) (i,j) = [f z | z <- q(i,j)]

(r ~~~ q) (i,j) = [f y | k <- [i+1..j-1], f <- r(i,k), y <- q(k,j)]

(r ... h) (i,j) = h(p(i,j))

axiom q = q(0,n)

(r `with` w) (i,j) = if w(i,j) then r(i,j) else []

Note that the axiom- and the with-clause are also de�ned as functions

applied to parsers. With these de�nitions, a grammar like hairpin is now

an executable yield parser, albeit of miserable e�ciency: There may be

an exponential number of parses, and any subparse is constructed many

times. This is alleviated by tabulating the parser functions. Let p be a

table indexing function and tabulated be a tabulation function such that

p (tabulated f) (i,j) = f(i,j), or equivalently

p (tabulated f) = f

With this convention, a grammar may be annotated for e�ciency, replac-

ing parsers by tables. Choosing to tabulate the parser for nonterminal

closed, grammar hairpin now reads

hairpin = axiom struct where

struct = open ||| p closed

open = bl <<< region ~~~ p closed |||

br <<< p closed ~~~ region |||

il <<< region ~~~ p closed ~~~ region

closed = tabulated (

((hl <<< base ~~~ (region `with` minsize 3) ~~~ base |||

sr <<< base ~~~ (p closed ||| open) ~~~ base) `with` basepair) ... h)

Such annotation does not a�ect the meaning of the grammar, nor that

of the parser. It only a�ects the parser's e�ciency: The parser now uses

dynamic programming. In general, the parser consists of a family of re-

cursively de�ned tables and functions. Substituting the de�nitions of the

combinators and the functions of a speci�c evaluation algebra, the anno-

tated grammar simpli�es to a set of recurrences as we traditionally see it

in dynamic programming.

2.5 Two Classical DP Algorithms in ADP Notation

Zuker's Algorithm for RNA folding. Zuker and Stiegler [25] gave a DP

algorithm for determining the minimal free energy structure of an RNA

molecule under the nearest neighbour model. The model and the algo-

rithm have been elaborated considerably since then, but for lack of space,

we base our discussion on the original description. Evers [5] has recently

reformulated Zuker's recurrences as a yield grammar Gzuker81
1:

1 This example shows actually executable ADP code, and contains a few re�nements

not explained in Section 2. The variants of the ~~~-operator are all equivalent in

zuker81 algebra inp = axiom struct where

(str,hl,bi,sr,bl,br,il,ol,ox,co,h) = algebra

-- nonterminals v and w are Zuker's tables V and W.

struct = str <<< p w

v = tabulated (

((hairpin ||| twoedged ||| bifurcation) `with` basepair) ... h)

hairpin = hl <<< base -~~ (region `with` minsize 3) ~~- base

bifurcation = bi <<< base -~~ p w ~-~ p w ~~- base ... h

twoedged = stack ||| bulgeleft ||| bulgeright ||| interior ... h

stack = sr <<< base -~~ p v ~~- base

bulgeleft = bl <<< base -~~ region ~-~ p v ~~- base

bulgeright = br <<< base -~~ p v ~-~ region ~~- base

interior = il <<< base -~~ region ~-~ p v ~-~ region ~~- base

w = tabulated (openleft ||| openright ||| p v ||| connected ... h)

openleft = ol <<< base -~~ p w

openright = ox <<< p w ~~- base

connected = co <<< p w ~-~ p w ... h

This grammar uses two essential nonterminals, v and w; the others

are introduced to re
ect Zuker's case analysis. It is quite instructive to

reformulate classical DP algorithms in the uniform ADP framework. Mak-

ing explicit the grammar behind the algorithm helps to clarify properties

relating to ambiguity as well as e�ciency.

The Needleman-Wunsch Algorithm of 1970. The Needleman-Wunsch al-

gorithm for pairwise sequence comparison [18] is based on a particularly

simple yield grammar with a single nonterminal symbol alignment, ter-

minals xbase, ybase, region, empty, and the algebra represented the

�ve operators replace, delete, insert, nil, h. When sequences x

and y are to be aligned, the input to this parser is x++y�1.

nw_alignment algebra x y = axiom alignment where

(replace, delete, insert, nil, h) = algebra

alignment = tabulated (

replace <<< xbase ~~~ p alignment ~~~ ybase |||

delete <<< region ~~~ p alignment |||

insert <<< p alignment ~~~ region |||

nil ><< empty ... h)

the declarative view, but operationally they are special cases with a more e�cient

implementation. E.g., ~~- is used when the righthand parser accepts a single base.

3 Ambiguity and Canonicity

3.1 Formalizing Ambiguity and Canonicity

Remember that a context-free grammar G is ambiguous, if there are dif-

ferent leftmost derivations for some x 2 L(G).

De�nition 5 (Yield Grammar Ambiguity). A tree grammar G is

ambiguous if there are di�erent leftmost derivations for some tree t 2

L(G). A yield grammar (G; y) is ambiguous, if G is ambiguous, otherwise

it is unambiguous. A yield grammar (G; y) is strictly unambiguous, if it

is unambiguous and y is injective.

Strict unambiguity means that for each s 2 A�, we have at most one

t 2 L(G) such that y(t) = s. Hence, we do not have an optimization

problem at all. Strictly unambiguous yield grammars play no part in

dynamic programming.

Canonicity means that all solutions from which we want to choose

an optimal one have a unique representation in the search space. For

example, alignments as shown in Sect. 1.1 could be canonized by requiring

that deletions are arranged always before adjacent insertions. To formalize

canonicity, we must introduce a canonical model as the point of reference.

De�nition 6 (Canonical Models and Canonical Yield Grammars).

Let K be a set, the canonical model. Let k be a mapping from L(G) to K.

A yield grammar (G; y) is canonical w.r.t. K and k if it is unambiguous

and the mapping k is bijective. A DP algorithm is canonical w.r.t. K and

k, if the underlying yield grammar is canonical w.r.t. K and k.

The canonical model may exist merely in the mind of the algorithm

designer, but preferably, it should be formulated explicitly, together with

the mapping k.

3.2 Analysing Canonicity

We show that the Zuker algorithm is not canonical. A canonical model for

RNA secondary structures would be sets of properly nested base pairs.

Such a model is too remote from the tree-like representation of RNA

structures. The Vienna notation, encoding a structure as a string of dots

and properly nested parentheses, however, proves to be very convenient.

It can be formally de�ned as L(V), using the string grammar V = fR!

:j::jS; S ! :::j:SjS:jSSj(S)g. Our little hairpin s would be denoted by

the pair ("((...(....)))","ccaaaaguguugg"). The mapping k from

Zuker's underlying data type Z to L(V) is de�ned via

k(bi(a; u; v; b) = "(" ++ k(u) ++ k(v) ++ ")"

k(ol(a; v) = "." ++ k(v)

k(co(u; v) = k(u) ++ k(v)

k(ox(u; b) = k(u) ++ "."

Further equations are omitted, as these su�ce to prove the equalities

below.

Theorem 1. The Zuker DP algorithm for RNA folding is not canonical

with respect to feasible RNA structures.

Proof. We observe the equalities

k(ol(a; ox(w; b))) = k(ox(ol(a;w); b) (1)

k(co(u; co(v; w))) = k(co(co(u; v); w)) (2)

k(ol(u; co(v; w))) = k(co(ol(u; v); w)) (3)

k(bi(a; u; co(v; w); b)) = k(bi(a; co(u; v); w; b)) (4)

k(bi(a; ox(u; b); w; c)) = k(bi(a; u; ol(b; w); c)) (5)

Either one of these proves that k is not injective.

While equalities (1) and (2) are quite obvious and easy to avoid, (3) { (5)

are more subtle, and there may be more such equalities.

The degree of redundancy incurred by the non-canonical grammar is

demonstrated in Section 4.4. Such redundancy is not an e�ciency prob-

lem, as the asymptotic e�ciency of a DP algorithm is not a�ected. How-

ever, it makes it impossible to use the same recurrences for other purposes,

say for the enumeration of all suboptimal solutions. This explains why

Zuker's algorithm employs an incomplete heuristics when enumerating

suboptimal foldings.

4 Master Recurrences for RNA Folding

4.1 A Canonical Grammar for Feasible RNA Structures

In [8] a data type FS is given together with a grammar Gf of all fea-

sible structures. FS extends T as used above by operators ss and ml

representing single stranded and multiloop structures, plus cons and ul

for constructing component lists. It is easy to show by induction that

L(Gf) � FS, and there is a canonical mapping k : L(Gf) ! L(V). An-

other grammar for feasible structures is implicitly given by the recurrences

developed in [22]. These recurrences are designed for canonicity, since the

authors seek a complete and non-redundant enumeration of suboptimal

structures. We do not show either grammar here as we plan to go one

step further, which will provide a signi�cant reduction in the number of

structures to be considered.

4.2 A Canonical Grammar for Canonical RNA Secondary

Structures

Although the energy model permits structures of minimal free energy

with isolated (unstacked) base pairs, there are good biophysical argu-

ments to consider such structures unrealistic. As already noted by Zuker

and Sanko� in [24]2, removing such redundant structures from the search

space is the key to obtaining more signi�cant near-optimal solutions.

De�nition 7. An RNA structure without isolated base pairs is canonical.

The canonical model suiting this de�nition is de�ned as L(W)�A� using

the string grammar W = fR ! �j:j::jS; S ! :::j:SjS:jSSj((P)); P !

Sj(P)g. (d; s) 2 K is subject to the restriction that bases in s can pair

as indicated by matching parentheses ind. The following grammar Gc for

canonical RNA structures is based on the data type FS. It uses an algebra

with several base sets, and an overloaded choice function h.

canonicals alg x = axiom struct where

(str,ss,hl,sr,bl,br,il,ml,nil,cons,ul,h,) = alg

singlestrand = ss <<< region

struct = str <<< p comps |||

str <<< (ul <<< singlestrand) |||

str <<< (nil ><< empty) ... h

comps = tabulated (cons <<< p block ~~~ p comps |||

ul <<< p block |||

cons <<< p block ~~~ (ul <<< singlestrand) ... h)

block = tabulated (p strong ||| bl <<< region ~~~ p strong ... h)

strong = tabulated (((sr <<< base -~~ (p strong ||| p weak) ~~- base)

`with` basepair) ... h)

weak = tabulated (((hairpin ||| leftB ||| rightB ||| iloop ||| multiloop)

`with` basepair) ... h)

where

2 Zuker and Sanko� suggest an even stronger restriction to structures with maximal

helices. Such recurrences are within the scope of the ADP approach [5], but well

beyond the space limits of this article.

hairpin = hl <<< base -~~ (region `with` minsize 3) ~~- base

leftB = sr <<< base -~~ (bl <<< region ~~~ p strong) ~~- base

rightB = sr <<< base -~~ (br <<< p strong ~~~ region) ~~- base

multiloop = ml <<< base -~~ (cons <<< p block ~~~ p comps) ~~- base

iloop = sr <<< base -~~ (il <<< region ~~~ p strong

~~~ region) ~~- base

The grammar distinguishes substructures closed by a single base pair

(weak) from those closed by at least two stacked pairs (strong). If we

identify these two nonterminals and merge their productions, an ADP

version of the Wuchty et al. DP recurrences [22] is obtained. Note how the

grammar takes care that single strands and closed components alternate

in multiloops, and that multiloops contain at least two branches.

We now specify the canonical mapping k : L(Gc)! L(W)
k (str cs) = k'' cs

k (hl b1 r b2) = "(" ++ k' r ++ ")"

k (sr b1 s b2) = "(" ++ k' s ++ ")"

k (ml b1 cs b2) = "(" ++ k'' cs ++ ")"

k (bl r s) = k' r ++ k s

k (br s r) = k s ++ k' r

k (il r1 s r2) = k' r1 ++ k s ++ k r2

k (ss r) = k' r

k' r = ['.' | b <- r] -- a sequence of |r| dots

k'' cs = concat (map k cs) -- concatenating (k c) for all c in cs

Theorem 2. Grammar Gc is a canonical yield grammar for canonical

RNA secondary structures.

Proof. We have to show that (a) the grammar Gc is unambiguous, and (b)

the mapping k is bijective. (a) is shown by induction on the derivations

of the grammar. For (b), injectivity of k is shown by structural recursion,

while surjectivity uses a string grammar k(Gc) (in analogy to y(G) in

Sect. 3) to show that L(W) � L(k(Gc)). Details are omitted.

4.3 E�ciency

A canonical grammar, whether encoded in ADP or in conventional matrix

recurrences, may require some extra tables compared to its non-canonical

counterpart, in order to keep more structures distinct. In our RNA exam-

ple, the non-canonical grammar zuker81 uses 2 tables, while the canonical

grammar canonicals uses 4. This is the price for the added versatility.

4.4 Applications

Due to Theorem 2 we know that the DP algorithm Gc considers each

canonical RNA structure exactly once. Hence it can serve as a \master

copy" of all DP algorithms which can be formulated as a FS-algebra.



Simple evaluation algebras. The analyses in Table 1 can be de�ned each

in a few lines: Energy minimization for canonical structures has been de-

Purpose Value Domain Interpretation Choice

of Operators Function

Energy minimization energy values energy rules for minimi-

hairpin loops, bulges, zation

stacked pairs, etc.

Structure enumeration trees in data tree constructors identity

type T HL, IL, SR, etc. function

Structure counting Integers multiply counts summation

of substructures

Structure count Reals multiply counts summation

estimation by pairing prob.

Table 1. Di�erent analyses based on Gc

signed and implemented in [5] and [16]. Structure enumeration has been

used to generate visualizations of the folding space via RNA-Movies [6].

Structure counts are correct due to canonicity of the grammar, and can-

onization of structures proves a dramatic reduction of the folding space. A

probabilistic estimate for feasible structures obtained in this manner3 was

already shown in [8] to be remarkably accurate. Accuracy is con�rmed

for the estimate of canonical structures supplied here. The Waterman for-

mula [20] for the number of possible structures for all sequences of length

n can also be written as a simple yield grammar.

Some Observations. A few of the observations made by applying these

evaluation algebras are summarized in Table 2, showing structure statis-

tics for initial segments of an RNA sequence4 from neurospora crassi.

n denotes sequence length, and the columns list structures counted, esti-

mated, or evaluated by the various algorithms. These �gures also indicate

that the majority of structures accounted for by Waterman's formula do

not exist in the folding space of a given sequence, the majority of struc-

tures considered by the Zuker algorithm is redundant, and the majority

of the feasible structures enumerated by the non-redundant Wuchty al-

gorithm is non-canonical.

Combined analyses. Since all algebras share the same grammar, a general

construction is available [9] that forms the cross product of two algebras.

Everything is mechanic except the combined choice function. This means

3 Equivalently based on the canonical grammar for feasible structures or on the special

recurrences given in [24], but modi�ed to re
ect base composition.
4 "gaccauacccacuggaaaacucgggaucccguccgcucuccca...".



n Waterman Zuker Probabilistic Feasible Canonical Probabilistic

formula algorithm estimate structs. structs. estimate

feasibles canonicals

5 8 0 1.16 1 1 1.00

10 423 12 5.98 9 1 1.34

15 30372 544 100.82 106 7 5.82

20 2516347 38160 510.60 390 7 9.02

25 226460893 2428352 15160.50 16343 72 71.37

30 21511212261 229202163 175550.00 235025 244 233.80

Table 2. Some structure statistics collected via the algebras listed in Table 1

we can, for example, return an optimal solution together with the total

number of co-optimal solutions.

Structural Motifs. Retaining the evaluation algebras and the canonical

model, but specializing the grammar, we obtain the above analyses for

all classes of structural motifs that can be described by a regular tree

grammar.

Application to pairwise sequence comparison. In many situations, con�-

dence in the answer computed by a sequence alignment algorithm could be

substantiated by reporting the number of (di�erent) co-optimal answers,

accompanied by some measure of the diversity within the co-optimal an-

swer space. This, again, requires canonization, which can be achieved by

our approach. For lack of space, we refer the reader to the \alignment

ambiguity awareness suite" in [9], Chapter 3.

5 Conclusion

We have provided a framework for reasoning about properties of DP

algorithms related to ambiguity. We hope to have shown that canonical

yield grammars are a useful concept both in theory { understanding the

properties of DP algorithms { and in practice { building reliable and

versatile DP algorithms more quickly. We expect to apply this approach

to further problem domains, as we are working to explore the full scope

of algebraic dynamic programming.

References

1. R. Bellman. Dynamic Programming. Princeton University Press, 1957.

2. W.S. Brainerd. Tree generating regular systems. Information and Control, 14:217{

231, 1969.
3. T.H. Cormen, C.E. Leiserson, and R.L. Rivest. Introduction to Algorithms. MIT

Press, Cambridge, MA, 1990.



4. R. Durbin, S. Eddy, A. Krogh, and G. Mitchison. Biological Sequence Analysis.

Cambridge University Press, 1998.

5. D. Evers. RNA Folding via Algebraic Dynamic Programming. Bielefeld University,

2000. Forthcoming Dissertation.

6. D. Evers and R. Giegerich. RNA Movies: Visualizing RNA Secondary Structure

Spaces. Bioinformatics, 15(1):32{37, 1999.

7. R. Giegerich. Code Selection by Inversion of Order-Sorted Derivors. Theor. Com-

put. Sci., 73:177{211, 1990.
8. R. Giegerich. A declarative approach to the development of dynamic program-

ming algorithms, applied to RNA folding. Report 98{02, Technische Fakult�at,

Universit�at Bielefeld, 1998.

9. R. Giegerich. Towards a discipline of dynamic programming in bioinformatics.

Parts 1 and 2: Sequence comparison and RNA folding. Report 99{05, Technische

Fakult�at, Universit�at Bielefeld, 1999. (Lecture Notes).

10. D. Gus�eld. Algorithms on Strings, Trees, and Sequences. Cambridge University

Press, 1997.
11. D. Gus�eld, K. Balasubramanian, and D. Naor. Parametric Optimization of Se-

quence Alignment. Algorithmica, 12:312{326, 1994.
12. I.L. Hofacker, P. Schuster, and P.F. Stadler. Combinatorics of rna secondary struc-

tures. Discr. Appl. Math, 89:177{207, 1999.
13. G. Hutton. Higher Order Functions for Parsing. Journal of Functional Program-

ming, 3(2):323{343, 1992.

14. S. Kurtz and G. W. Myers. Estimating the Probability of Approximate Matches.

In Proceedings Combinatorial Pattern Matching, pages 52{64, 1997.

15. H.T. Mevissen and M. Vingron. Quantifying the Local Reliability of a Sequence

Alignment. Prot. Eng., 9(2), 1996.

16. C. Meyer. Lazy Auswertung von Rekurrenzen der Dynamischen Programmierung,

1999. Diploma Thesis, Bielefeld University, (in German).
17. D. Naor and D. Brutlag. On Near-Optimal Alignments in Biological Sequences.

J. Comp. Biol., 1:349{366, 1994.
18. S. B. Needleman and C. D. Wunsch. A general method applicable to the search for

similarities in the amino acid sequence of two proteins. J. Mol. Biol., 48:443{453,

1970.
19. R. Nussinov, G. Pieczenik, J.R. Griggs, and D.J. Kleitman. Algorithms for loop

matchings. SIAM J. Appl. Math., 35:68{82, 1978.
20. M. S. Waterman and T. F. Smith. RNA secondary structure: A complete mathe-

matical analysis. Math. Biosci., 41:257{266, 1978.

21. M.S. Waterman and T.H. Byers. A dynamic programming algorithm to �nd all

solutions in a neighborhood of the optimum. Math. Biosci., 77:179{188, 1985.

22. S. Wuchty, I. Fontana, W.and Hofacker, and P. Schuster. Complete suboptimal

folding of RNA and the stability of secondary structures. Biopolymers, 49:145{165,

1998.

23. M. Zuker. On Finding all Suboptimal Foldings of an RNA Molecule. Science,

244:48{52, 1989.

24. M. Zuker and S. Sanko�. RNA secondary structures and their prediction. Bull.

Math. Biol., 46:591{621, 1984.

25. M. Zuker and P. Stiegler. Optimal computer folding of large RNA sequences

using thermodynamics and auxiliary information. Nucleic Acids Res., 9(1):133{

148, 1981.


