
A Systematic Approach to Dynamic Programming in Bioinformatics

Robert Giegerich∗

Postal address: Faculty of Technology, Bielefeld University, 33594 Bielefeld, Germany.

Abstract

Motivation: Dynamic programming is probably the most
popular programming method in bioinformatics. Sequence
comparison, gene recognition, RNA structure prediction and
hundreds of other problems are solved by ever new variants
of dynamic programming. Currently, the development of a
successful dynamic programming algorithm is a matter of
experience, talent, and luck. The typical matrix recurrence
relations that make up a dynamic programming algorithm are
intricate to construct, and difficult to implement reliably. No
general problem independent guidance is available.
Results: This article introduces a systematic method for
constructing dynamic programming solutions to problems
in biosequence analysis. By a conceptual splitting of
the algorithm into a recognition and an evaluation phase,
algorithm development is simplified considerably, and
correct recurrences can be derived systematically. Without
additional effort, the method produces an early, executable
prototype expressed in a functional programming language.
The method is quite generally applicable, and while pro-
gramming effort decreases, no overhead in terms of ultimate
program efficiency is incurred.
Contact: robert@techfak.uni-bielefeld.de

∗Work partially supported by a grant from Australian National University.

1 Motivation and Overview

1.1 The Role of Dynamic Programming in
Bioinformatics

Dynamic programming (DP) is a fundamental programming
technique, applicable to great advantage where the input to a
problem spawns an exponential search space in a structurally
recursive fashion. If subproblems are shared and the princi-
ple of subproblem optimality holds, DP can evaluate such a
search space in polynomial time. Classical application ex-
amples of DP are optimal matrix chain multiplication or the
triangulation of a convex polygon (Cormen et al., 1989).

For very good reason, dynamic programming is the most
popular paradigm in computational molecular biology. Se-
quence data — nucleic acids and proteins — are determined
on an industrial scale today. The desire to give a mean-
ing to these molecular data gives rise to an ever increasing
number of sequence analysis tasks, which naturally fall into
the class of problems outlined above. Dynamic program-
ming is used for assembling DNA sequence data from the
fragments that are delivered by automated sequencing ma-
chines (Anson and Myers, 1997), and to determine the in-
tron/exon structure of eucaroytic genes (Gelfand and Royt-
berg, 1993). It is used to infer function of proteins by ho-
mology to other proteins with known function (Needleman
and Wunsch, 1970; Smith and Waterman, 1981), and it is
used to predict the secondary structure of functional RNA
genes or regulatory elements (Zuker, 1989). A recent text-
book (Durbin et al., 1998) presents a dozen variants of DP
algorithms in its introductory chapter on sequence compari-
son. In some areas of computational biology, dynamic pro-
gramming problems arise in such variety that a specific code
generation system for implementing such algorithms has been
developed (Birney and Durbin, 1997).

1.2 Some of the Intrinsic Difficulties of Dy-
namic Programming Algorithms

The development of a DP algorithm is a challenging task. The
core of the algorithm is given by a set of recurrences, defin-

1

Systematic Dynamic Programming 2

ing the entries in one or more matrices. Neither the bioin-
formatics literature (Waterman, 1995; Gusfield, 1997; Durbin
et al., 1998), nor the computer science text books like
(Cormen et al., 1989) give advice on how to systematically
choose these matrices and construct the DP recurrences for a
problem at hand. In all but the most simple cases, these re-
currences are difficult to obtain and to validate. Even when
given, they can be hard to understand, as all bioinformatics
teachers may witness. Their implementation is error-prone
and time-consuming to debug, since a subtle subscript error
may not make the program crash, but instead, quietly lead to
a suboptimal answer every now and then.

The intrinsic difficulty of DP recurrences can be explained
by the following observation: For the sake of achieving poly-
nomial efficiency, DP algorithms perform two subtasks in an
interleaved fashion: The “first” phase is the construction of
the search space, or in other words, the set of all possible
answers. The “second” phase evaluates these answers and
makes choices according to some optimality criterion. The
interleaving of search space construction and evaluation is es-
sential to prevent combinatorial explosion. On the other hand,
describing both phases separately is a great intellectual relief.
It is often used in instruction. To explain sequence alignment,
we may say: “First” we form all possible alignments, “then”
we score them all and choose the best. But this strategy lacks
the amalgamation of both phases and suggests an algorithm
of exponential runtime.

1.3 A Resolution via an Algebraic Approach to
Dynamic Programming

This article shows a way to reconcile the simplicity of sepa-
rate phase descriptions with runtime efficiency. With a suit-
ably chosen interface between the two phases, phase amal-
gamation comes for free, and the complexity introduced by it
need not bother us any further. The intuitively simple concept
of an algebraic data type is used to organize phase separation
as well as phase amalgamation, hence our approach has been
namedAlgebraic Dynamic Programming.

1.4 Goals and Structure of this Article

We introduce the method ofAlgebraic Dynamic Program-
ming(ADP) for the systematic development of dynamic pro-
gramming algorithms. The main virtue of ADP is its high
degree of abstractness, which supports intuitive reasoning as
well as formal validation, leading to more reliable implemen-
tations and modular (re-usable) algorithm components. A
significant increase of programming productivity results from
this. More complex problems can be approached with better
chance of success, and there is no loss of efficiency compared

to ad-hoc approaches. With some experience in ADP, you
will gain a strong intuitive judgement whether a new problem
at hand is likely to have a DP solution, and what its efficiency
will be.

Our introduction to ADP here will be detailed but semi-
formal. It is written towards the bioinformatics commu-
nity, although the method pertains to DP in general. Un-
derpinnings in formal language theory, scope of applica-
tion, detailed efficiency analysis, further classical and new
applications are only touched upon. They are treated in
more detail in (Giegerich, 1998; Evers et al., 1999; Giegerich
et al., 1999; Giegerich, 1999). The discussion of related work
in bioinformatics is postponed to Section 4.1

The first part of this article introduces the method, using as a
running example pairwise sequence alignment under the gen-
eral and the affine cost model. We try to carefully elucidate
all central aspects of the method to the novice as well as to
the expert in DP.

The second part of this article sketches an application of our
method — the development of a new algorithm for aligning
recombinant DNA sequences in such a way that signals of
recombination are respected. We shall document how this
method is able to find more meaningful gap positions in pair-
wise sequence alignment, but the application of this algo-
rithm to sequence data of various origins will be reported
elsewhere. Instead, we will discuss software engineering is-
sues arising in the practical use of ADP.

2 The Method: Algebraic Dynamic
Programming

Throughout this article,x andy denote the two sequences to
be aligned, with lengthsm andn, respectively.

2.1 Recognition and Evaluation Phase

DP algorithms typically solve optimization problems, which
are defined by evaluation rules over some recursive search
space. The elements of this search space may be alignments,
RNA secondary structures, gene structures, polygon triangu-
lations, and so on. Because of this variety, let us introduce the
generic name of asubject under evaluation(SUE) for such
data. Their evaluation is defined by some scoring scheme, to-
gether with some rule of preference like maximum similarity
or minimum free energy.

The key observation on which our method is based is the
following: DP recurrences arise as the amalgamated com-
position of two algorithmic subtasks (conceptually: phases)
called recognition and evaluation. The recognition phase

Systematic Dynamic Programming 3

takes care ofwhich SUEs to analyse, like “all alignments
of x and y that have no gaps in a certain region”, or “all
RNA structures that do not have isolated base pairs and fold
into a cloverleaf pattern”. The evaluation phase scores these
SUEs and applies the rule of preference. Both phases can be
described and implementedseparatelyin a very transparent
way.

2.2 Algebras Define Formula Vocabularies

The algebraic view of data and grammars is essential to struc-
turing our ideas. Fortunately, we do not need to dive deeply
into the theory of data types. A (concrete) algebra is sim-
ply some set and a family of operations defined on it, like
integer numbers with integer arithmetic. Anabstract alge-
bra is merely a supply of symbols, used to construct formulas
(terms), while a set of values is left (yet) unspecified. From
the symbols{0, 1, +, ∗}we build terms like1+1 or (0∗1)+0.
These may be interpreted in the Boolean algebra, or in an al-
gebra of numbers, where they evaluate to a Boolean or a nu-
meric value, respectively. We may also choose to interpret
them in an algebra of symbols (the term algebra), where+
merely denotes the function that, applied to two termsx and
y, creates the termx + y.

2.3 Formulas Describe SUEs

We are used to think of sequence alignments as strings padded
in lines of a matrix, or as paths on a grid (Waterman, 1995).
We may represent RNA structures as “squiggle” drawings,
circular graphs, base pair lists or “mountain structures”
(Hofacker et al., 1999). All these are useful representations.
In a slightly more abstract and more uniform view, our SUEs
can be represented as terms constructed over a suitable alge-
bra. For example, an alignment of the two sequencesactac
andagggtc is written traditionally

a c - - t a c
a g g g t - c

Let the operatorsR, I, D denote the standard edit opera-
tions Replacement (including a match), Insertion and Dele-
tion. LetE denote the empty alignment. The alignment may
now be written as the formula

R(a,R(c,I(R(t,D(a,R(c,E,c)),t),gg),g),a)

Formally speaking,R is a ternary operator that applies to two
individual bases, and the remaining alignment.I andD are
binary operators, that apply to an inserted or deleted sequence
of bases and the remaining alignment. Formulas can always
be depicted as trees; such a tree-like representation is shown
in Figure 1. Note that the formula and the tree are more spe-
cific than the traditional representation, as they clearly state
that the alignment has one (two-base) insertion rather than
two (single-base) insertions.

................................

................................

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

.....

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

.....

................................

................................

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

.....

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

.....
R

R

I

R

D

R

E

x

a

c

t

a

c c

t

gg

g

a

y

Figure 1: An alignment in tree form, and its yield indicated
in boxesx andy .

There is always a choice. We may choose to represent in-
sertions and deletions base by base, distinguishing the gap
opening (operatorsI, D) from gap extension (operatorsIx,
Dx). Our alignment is now represented by the formula

R(a,R(c,I(Ix(R(t,D(a,R(c,E,c)),t),g),g),g),a)

Both the algebras{R, I, D, E } and{R, I, Ix, D,
Dx, E } will be used in the sequel. Let us call them thegen-
eral and theaffine alignment algebra.

2.4 Algebras Evaluate SUEs

Once alignments are written as formulas, it is easy to define
scoring schemes. We only need to supply a suitable algebra.
Let w(a,b) be an integer score associated with replacing
charactera by characterb, and letgap(u) be an arbitrary
function that assigns a cost to a gap, i. e. a sequenceu of
inserted or deleted bases. Thegeneral cost algebrais defined
as follows:

general_cost_algebra = (R(a,r,b) = w(a,b) + r,
I(r,u) = gap(u) + r,
D(u,r) = gap(u) + r,
E = 0,
h = minimum)

Alternatively, letopen andextend be constant costs asso-
ciated with opening a gap, and extending a gap by a single
base. Theaffine cost algebrais defined as follows:

affine_cost_algebra = (R(a,r,b) = w(a,b) + r,
I (r,b) = open + r,
Ix(r,b) = extend + r,

Systematic Dynamic Programming 4

D (a,r) = open + r,
Dx(a,r) = extend + r,
E = 0,
h = minimum)

Algebras that evaluate SUEs are calledevaluation algebras.
Aside from the functions required to interpret SUE formulas,
we always specify a choice functionh with each algebra. It
indicates our rule of preference, to be used in optimization.

An alignment is scored simply by interpreting and evaluating
the formula that represents it according to the chosen evalua-
tion algebra. Assuming thatw(x,x) = 0 , the above align-
ment example evaluates to
R(a,R(c,I(Ix(R(t,D(a,R(c,E,c)),t),g),g),g),a) =
w(a,a)+w(c,g)+open+extend+w(t,t)+open+w(c,c)+0 =
w(c,g)+2*open+extend

in the affine cost algebra, while in the general cost algebra it
evaluates to
R(a,R(c,I(R(t,D(a,R(c,E,c)),t),gg),g),a) =
w(a,a)+w(c,g)+gap(gg)+w(t,t)+gap(a)+w(c,c)+0 =
w(c,g)+gap(gg)+gap(a)

This is the discipline we impose: The data typeSUE repre-
senting the SUEs must be chosen such that the intended eval-
uation function can be specified as anSUE-algebra. We have
not yet encountered an application where such a choice was
impossible or even difficult.

2.5 Grammars Describe Specific Classes of
SUEs

An algebra always defines a language of formulas. In all but
the most trivial cases, the SUEs we are interested in form
a proper subset of this language. We may want to exclude
alignments where a gap is artificially split in two; we may
want to normalize alignments by the rule that if a deletion
is adjacent to an insertion, the deletion always goes first. In
some application context, we may forbid gaps in a particular
region altogether, and so on.

We introduceyield grammars1 to specify exactly which SUEs
we are interested in. A yield grammar is given by a tree gram-
mar and a yield function. Atree grammar, in turn, is like
a context-free grammar, with terminal symbols, nonterminal
symbols, a designated axiom symbol, and productions where
the right-hand sides are trees (formulas) taken from some un-
derlying term algebra. Nonterminal symbols take the place of
variables at the leaves of these trees. See Figure 2.

Theyield functionmaps the terminal symbols at the leaves of
a tree into a sequence of symbols, or in the case of alignments,
into two such sequences, reproducingx andy . See Figure 1.

1Computationally, yield grammars are quite similar to context free gram-
mars; however, the tree grammar by itself is a regular grammar, and yield
parsing as defined here is different from tree parsing, see (Brainerd, 1969) or
(Giegerich, 1990).

The parsing problem for yield grammarsis: Given two se-
quencesx andy , find all alignmentswsuch thatyield(w)
= (x,y) . Yield parsers will implement the recognition
phase.

We now introduce a notation for tree grammars that is more
suitable for computer input than the graphical form in Fig-
ure 2. In this notation,||| separates alternative rules for
the same nonterminal symbol, and<<< denotes the applica-
tion of some operator to its arguments, which are separated
by ˜˜˜ . This notation is also called the blackboard notation.
Here is the general alignment grammar:
ga_grammar = axiom ali where

ali = R <<< xbase ˜˜˜ ali ˜˜˜ ybase |||
D <<< region ˜˜˜ ali |||
I <<< ali ˜˜˜ region |||
E <<< empty

This grammar actually does not restrict the language of align-
ment formulas at all. In the case of the affine alignment alge-
bra, we shall be more specific. While formulas representing
alignments can be built fromR, I, Ix, D, Dx, E in
arbitrary ways, our intention is that a gap always starts with
an I or D operator, followed by zero or moreIx or Dx op-
erators, respectively. Such well-formedness conditions are
expressed via the following affine alignment grammar:
aa_grammar = axiom ali where

ali = R <<< xbase ˜˜˜ ali ˜˜˜ ybase |||
D <<< xbase ˜˜˜ exDel |||
I <<< exIns ˜˜˜ ybase |||
E <<< empty

exDel = Dx <<< xbase ˜˜˜ exDel ||| ali
exIns = Ix <<< exIns ˜˜˜ ybase ||| ali

Note that both grammars allow a deletion immediately adja-
cent to another deletion. We may consider such alignments
redundant, since the adjacent gaps should be merged. It is an
easy exercise to modify the grammars such that adjacent dele-
tions or insertions are excluded. A further refinement leads to
the canonization used by in (Kurtz and Myers, 1997) in order
to evaluate statistical significance of alignments.

A grammar in blackboard notation is the first and creative
step in ADP. All further steps are systematic refinements of
this first version.

2.6 Parsers Implement the Recognition Phase

We now solve the yield parsing problem in a rather elegant
way. This section turns the grammar into the correspond-
ing recognizer, with only a minor refinement of notation.
The technique we use is combinator parsing (Hutton, 1992),
adapted to our yield grammars.

We need a little notation and conventions. Letx andy be two
input sequences, of lengthmandn, respectively. Thei -th
character ofx is denotedx!i . Subwords ofx or y will be

Systematic Dynamic Programming 5

ali - R

xbase ali ybase

D

region ali

I

ali region

E

Figure 2: The general alignment grammar in graphical form. The only nonterminal symbol isali . xbase andybase
denote arbitrary bases inx or y , respectively.region denotes a nonempty sequence of bases.

denoted by their bounding positions. The subword(i,j) of
x holds the charactersx!(i+1)...x!(j) . So the length
of subword(i,j) is j-i , and if x = "justice" , then
subword(0,4) = "just" , subword(4,7) = "ice" .
The convenience of this convention is with splitting sub-
words: (i,j) = (i,k) ++ (k,j) for all k betweeni
andj . The empty list is denoted[] , ++ denotes list concate-
nation, and the list comprehension[f(x) | x <- xs,
pred(x)] denotes the list of all valuesf(x) such thatx
is from the listxs and satisfies predicatepred .

Precedence for the operators in our grammar notation was
chosen such that grammars can be written mostly without
parentheses.<<< takes precedence over˜˜˜ , which takes
precedence over||| . Furthermore,̃ ˜˜ associates to the
left. Hence, a production like

u = f <<< u ˜˜˜ v ˜˜˜ w ||| z

is implicitly parenthesised as
u = (((f <<< u) ˜˜˜ v) ˜˜˜ w) ||| z

Parsers operate on the two input sequencesx andy . A parser
is a function that can be applied to a suffix ofx and a suffix
of y , yielding a list of all the alignments of the two suffixes.
There is a parser for each nonterminal and terminal symbol of
the grammar. Parsing its input, it returns a list of all SUEs of
the appropriate type that can be constructed from the input. If
no such SUEs exist, a parserfails by returning an empty list.

Terminal parsers apply to one of the input sequences, and in
their case, a position pair(i,j) denotes a subword of this
input sequence.

These are the parsers recognizing terminal symbols:
xbase(i,j) = [x!j | i+1 == j]
ybase(i,j) = [y!j | i+1 == j]
region(i,j) = [(i,j)| i < j)]
empty(i,j) = [() | i == m, j == n]

If successful, parsersxbase andybase return a result list
holding a single base,region returns a non-empty subword.

empty returns a void result (denoted here by an empty tuple).
All result lists are empty if the parser fails.

The operators||| etc. are defined as higher-order functions
that compose parsers from simpler ones. This is why they
are colloquially called parser combinators. Their definition is
given in Figure 3. One subtlety needs extra explanation: The
definition of f <<< p seems to assume a unary functionf .
But note thatf may as well be a binary (ternary etc.) function,
that is given only its first argument. In that case,f(x) de-
notes the function derived fromf by fixing the first argument
to x . So, a parser like(R <<< xbase) actually returns a
list of functions. The grammar takes care that eventually all
functions are supplied with all their arguments. Therefore,
the equivalence

(R <<< xbase -˜˜ ali ˜˜- ybase)(i,j) =
[R(x!(i+1),r,y!(j+1)) | r <- ali(i+1,j+1)]

holds fori<m andj<n under the above definitions.

Finally, theaxiom clause is interpreted as the initial call to
the parser for the axiom symbol:

axiom p = p(0,0)

With these refinements in mind, take a fresh look at gram-
mars: The general alignment grammar now reads:
ga_grammar = axiom ali where

ali = R <<< xbase -˜˜ ali ˜˜- ybase |||
D <<< region +˜˜ ali |||
I <<< ali ˜˜+ region |||
E ><< empty

The productions have now turned into mutually recursive def-
initions for the parsers for nonterminal symbols. The general
alignment grammar defines a single parserali , whereas the
affine alignment grammar defines parsersali , exIns and
exDel . For each grammar and sequencesx andy , the ax-
iom clause means a call toali(0,0) , which evaluates to
the list of all well-formed alignments ofx andy .

Parser combinators are certainly the quickest way to obtain a
correct, recursive parser from a grammar. They are likely to
yield the least efficient parsers the world has seen.

Systematic Dynamic Programming 6

(p ||| q)(i,j) = p(i,j) ++ q(i,j) -- alternative
(f <<< p)(i,j) = [f(u)|u <- p(i,j)] -- function application
(f ><< p)(i,j) = [f |u <- p(i,j)] -- nullary function appl.
(p +˜˜ q)(i,j) = [z(v)|k <- [i+1..m], z <- p(i,k), v <- q(k,j)] -- juxtaposition
(p ˜˜+ q)(i,j) = [z(v)|k <- [j+1..n], z <- p(i,k), v <- q(j,k)]
(p -˜˜ q)(i,j) = [z(v)|i < m, z <- p(i,i+1), v <- q(i+1,j)] -- bounded juxtaposition
(p ˜˜- q)(i,j) = [z(v)|j < n, z <- p(i,j+1), v <- q(j,j+1)]

Figure 3: The operators of the blackboard notation are redefined as parser combinators. The parser(p ||| q) yields the
concatenated results of parsersp andq. The parser(f <<< p) yields the results of parserp with the functionf applied
to each result.(f ><< p) defines the case for a nullary functionf . The˜˜˜ operator comes in four variants. In(p +˜˜
q) , p reads from inputx , whileq readsx andy . Conversely, in(p ˜˜+ q) , p reads both inputs, whileq reads fromy . The
combinators-˜˜ and˜˜- define the special case of+˜˜ and˜˜+ for reading a single character fromx andy , respectively.

2.7 Dynamic Programming =
Recursion + Tabulation

As the result of the previous section, a yield grammar in our
notation can be interpreted as a top-down, nondeterministic,
recursive parser. Calling this parser on two sequencesx and
y , it will enumerate all their alignments (as specified by the
grammar). Doing so, it will consume exponential time and
space, for a double reason. The first reason is that it recom-
putes parses of the same subsequences many times. The sec-
ond reason is the sheer size of the answer - there are exponen-
tially many alignments of two sequences. This and the next
section will eliminate both reasons for exponential explosion.

Dynamic programming achieves polynomial efficiency over
a recursively defined, exponential search space by tabulating
and re-using results for shared subproblems. Mathematically,
this is no big deal — a table is nothing but a function mapping
a (finite) subscript domain to the values of the correspond-
ing table entries. Whenf is a function of a pair of integers,
let us denote byf! anmby n table such thatf!(i,j) =
f(i,j) .

This convention allows to introduce some efficiency annota-
tion in the grammar, turning parsers into tabulated functions:

ali! = R <<< xbase -˜˜ ali! ˜˜- ybase |||
D <<< region +˜˜ ali! |||
I <<< ali! ˜˜+ region |||
E ><< empty

Here it is, our first dynamic programming algorithm. As
annotated, the general alignment grammar specifies a recur-
sively defined,m by n table, whereali!(i,j) holds all
alignments of suffixesi,j .

Thetabulating parserso obtained is much more efficient than
the recursive one, as all intermediate parses are calculated
only once, stored in and re-used from the table. This is what
we know as dynamic programming. Each table entry holds
a list of answers, i.e. alignments. If only there was not an
exponential number of these alignments, the table could be
computed in polynomial time.

2.8 From Parsers to Multi-Purpose Evaluators

Who wants to see an answer of exponential size, anyway?
In the previous sections, we have implicitly assumed that the
parsers were using the term algebra of alignments, as if they
were explicitly constructing those SUEs representing align-
ments. By a simple abstraction, parsers turn into general pur-
poseevaluators: We interpret the symbolsR, I, D, E etc.
as the functions of a suitable evaluation algebra, given to the
parser as an extra parameter. If called with a scoring alge-
bra,ali!(0,0) evaluates to the list of scores of all possi-
ble alignments. All we need to add is the application of the
choice function already provided within each algebra. We use
the operator(...) to associate the choice function with a
production. It takes lowest priority among all grammar oper-
ators. Its formal definition is

(p ... h)(i,j) = if z == [] then [] else h(z)
where z = p(i,j)

Augmented by the choice function, the affine alignment eval-
uator now reads
af_eval alg = axiom (ali!) where

(R,D,Dx,I,Ix,E,h) = alg

ali! = R <<< xbase -˜˜ ali! ˜˜- ybase |||
D <<< xbase -˜˜ exDel! |||
I <<< exIns! ˜˜- ybase |||
E ><< empty ... h

exDel! = Dx <<< base -˜˜ exDel! ||| ali! ... h
exIns! = Ix <<< exIns! ˜˜- base ||| ali! ... h

This is the amalgamation of recognition and evaluation
phase! Instead of constructing the recognized structures, the
parser evaluates them incrementally. The choice function ap-
plied at intermediate steps controls the number of results.
The function callaf eval affine cost algebra x
y evaluates to the score of an optimal alignment, in time and
spaceO(m ∗ n). Our DP algorithm is complete.

What have we achieved? Is this anything else than a long
way to arrive at a simple DP algorithm? Well — note that
we have more than a single algorithm. The above gram-
mar specifies the recurrences independently of the evalua-
tion algebra. If we change the way we score the alignments,
we merely plug in alternative definitions for the functions
of the algebra. For example, we may specify a unit cost

Systematic Dynamic Programming 7

algebra, where deletions, insertions and mismatches count
1. It is just as easy to introduce position-dependent scor-
ing. We may also use the grammar to do statistics: As an
exercise, the reader may devise acounting algebra, such that
af eval counting algebra x y computes the num-
ber of possible alignments ofx andy . Such statistics is exten-
sively used in RNA secondary structure research in (Hofacker
et al., 1999).

Furthermore, note that our dynamic programming algorithm
specified in this form is free of subscript errors, plainly be-
cause there are no subscripts. All the subscript handling is
done by the combinators, and once these have been set up
correctly for a given area of application, we may write more
complicated grammars for more refined analyses, without
worrying about subscripting at all. Some quite sophisticated
grammars for restricted classes of RNA secondary structures
can be found in (Giegerich, 1998).

2.9 Deriving First-Order DP Recurrences

A dynamic programming algorithm is completely specified
by an annotated tree grammar and an evaluation algebra. This
actually is a much more convenient level to reason about dy-
namic programming algorithms than the traditional matrix re-
currences. But still, we need these recurrences explicitly, in
order to implement the algorithm efficiently in an imperative
programming language like FORTRAN or C. But we have al-
ready done all the algorithm design work, the rest is merely
straightforward formula manipulation.

Gotoh first specified the recurrences for computing the opti-
mal global alignment under the affine cost model in quadratic
time (Gotoh, 1982; Waterman, 1995). Readers familiar with
this work will rightfully expect that our tabulated parsers
ali! , exIns! , andexDel! correspond to the three tables
D, F , andE used in (Waterman, 1995). Substituting the def-
inition of the affine cost algebra and the parser combinators,
we can systematically eliminate all higher order functions in
the grammar, leaving us with three tables defined via mutual
recursion. Let us considerexDel! first. From the defini-
tions we obtain in a first step
exDel!(i,j) = minimum([extend + exDel!(i+1,j)|i<m]

++[ali!(i,j)])

All table entries are singleton lists, so we identify[v] andv .
Splitting up oni we obtain the start and the recursive case:
exDel!(m,j) = ali!(m,j)
exDel!(i,j) = minimum[extend + exDel!(i+1,j),

ali!(i,j)] for i<m

Similarly for exIns! we obtain
exIns!(i,n) = ali!(i,n)
exIns!(i,j) = minimum [extend + exIns!(i,j+1),

ali!(i,j)] for j<n

Finally we substitute the definitions forali! , yielding

ali!(i,j) = minimum
([w(x!(i+1),y!(j+1)) + ali!(i+1,j+1)|i<m,j<n] ++

[open + exDel!(i+1,j) | i<m] ++
[open + exIns!(i,j+1) | j<n] ++
[0 | i == m, j == n])

Again splitting up the cases we arrive at

ali!(m,n) = 0
ali!(i,n) = open + exDel!(i+1,n) for i<m
ali!(m,j) = open + exIns!(m,j+1) for j<n
ali!(i,j) = minimum[w(x!(i+1),y!(j+1))+ali!(i+1,j+1),

open + exDel!(i+1,j),
open + exIns!(i,j+1)],otherwise

These recurrences are equivalent to those in (Waterman,
1995), but not identical. Since the recursion runs in the op-
posite direction, the gap opening contribution occurs in the
recurrences forali! rather than with those forexDel!
andexIns! as in (Waterman, 1995).

2.10 Method Summary

Having run through the development of a classical dynamic
programming algorithm with our method, let us reconsider
what was genuine to the method, and what results from this
particular application.

The introduction of the algebraic data typeSUE representing
SUEs, and the separate specification of grammar and evalu-
ation algebra is the core of our method. Different areas of
application will use different algebras to describe SUEs. Tree
grammars will always be used in the given notation, but the
yield function and correspondingly the operational definition
of the combinators may need to be adjusted. For example,
RNA folding works on a single input sequence, which is re-
flected in the way the combinators are defined.

Once the SUE algebra is chosen, grammars and evaluation
algebras may vary independently, leading to independent re-
finements of SUEs and of scoring functions. Each combina-
tion of grammar and algebra leads to a specific set of recur-
rences.

The efficiency of the specified algorithm is easily read from
the grammar. The recognition phase always requiresO(nt+2)
steps, wheret is the maximal number of+˜˜ and˜˜+ op-
erators in the righthand side of a production2. The overall
efficiency critically depends on the properties of the choice
function.

2In fact, recognition time can always be reduced toO(n3) by a grammar
transformation shown in (Giegerich, 1998).

An Application 8

3 An Application: Development of an
Algorithm for Aligning Recombi-
nant DNA Sequences

In this section we report on an application3 of the ADP ap-
proach. We only give a short biological justification, and
mainly concentrate on the software engineering aspects of
using ADP. The novelties in this section (aside from the al-
gorithm itself) are the use of an executable specification, and
some slight extensions of the method.

3.1 The Problem: Searching for the Signals of
Recombination

DNA recombination is an important mechanism in molecular
evolution. Genes that have evolved independently in different
strains of a virus, for example, may recombine in a new strain.
This adds the power of parallel processing to Darwinian evo-
lution, which is otherwise based on error and trial.

In the presence of recombinant DNA, most commonly used
analysis programs go wrong. There is no longer a tree-like
phylogeny, as different parts of a sequence stem from differ-
ent ancestors. In such a case, the best we can hope for from
a tree reconstruction program is to tell us that there is support
for several contradictory trees in the sequence data.

But there is a difference between data which are just noisy,
and data which carry a clear signal about recombination
events in their evolutionary history. There are different ways
conceivable to explicitly search for recombination signals.
The PhylPro program (Weiller, 1998) does so by monitoring
patterns of changes in the mutual similarities in a multiple se-
quence alignment. In this section, we take a direct approach,
making pairwise sequence alignment sensitive to signals of
recombination.

Many molecular mechanisms of recombination leave traces
in the form of target site duplications of varying length. Our
goal is to generalize the edit-distance model of sequence com-
parison such that

• insertions and deletions are recognized as recombination
signals in the presence of target site duplications, and

• arbitrary and independent score functions may be as-
signed with recombination sites and ordinary gaps.

3The application of a programming method is the development of a new
algorithm. The application of this algorithm to study sequence data will be
reported elsewhere.

3.2 Extending the Edit Distance Model

So far we have worked with the classical string edit model,
using replacements, insertions and deletions. As new edit op-
erations, we introduce recombinant deletions (L) and inser-
tions (S). Lett be a (typically short) sequence of nucleotides
that occurs inx andy. L(tut, t−) denotes arecombinant
deletionfrom x: Following the target sitet, present in both
x andy, a sequenceu of nucleotides is deleted fromx. This
requires a second copy oft to follow u in x. In y, a gap of the
combined length ofu andt is introduced.

S(t−, tut) denotes arecombinant insertionin y: Following
the target sitet, present in bothx and y, a sequenceu of
nucleotides is inserted intoy, followed by a new copy oft in
y. In x, a gap of the combined length ofu andt is introduced.

3.3 A Recombinant Alignment Example

The improvements to be expected from a recombinant align-
ment algorithm over pairwise alignment insensitive to recom-
bination signals are demonstrated in Figure 4. We applied
the algorithm developed below to chicken immunoglobin se-
quences extracted from a multiple alignment, and de-gapped.
These are two typical findings:

• In the left part of the recombinant alignment, a gap
of length 12 (present in the multiple alignment) is re-
discovered in the correct position. Additionally, it is
marked as a direct repeat, as it may result from a re-
combinant insertion with an empty insert. Further ex-
periments reveal that a pairwise alignment insensitive to
recombination, but with the same scoring otherwise, has
an insertion in approximately the same position, but does
not correctly exhibit the repeat due to the local ambigu-
ity of the alignment.

• The right part of the original alignment is poor with 8
mismatches (marked by the symbol*) within a region of
23 bases (between the delimiters> and<). The recom-
binant alignment offers an alternative explanation. It ex-
hibits both a recombinant deletion and an insertion, with
significant target sites, reducing the mismatch count to 1
over the same region.

3.4 Rapid Prototyping via a Functional Pro-
gramming Language

The ADP method relies on algebraic data types and higher
order functions. Both concepts are provided by modern func-
tional programming languages, based on Church’sλ-calculus
(Barendregt, 1984). In particular, the comfortable syntax of
the functional languageHaskell(Bird, 1998) allows to embed

An Application 9

>* * ** * ** * <
...tac------------tatggctggtaccag...ctccggttccctatccggctccacaggcacat...
...tactatggctggtactatggctggtaccag...ctccggctccccaggcagaaccacaagcacat...

> * <
...tactatggctggtac------------cag...ctccggttccctatccggctccacaggca------------cat...
...tactatggctggtactatggctggtaccag...ctccgg------------ctccccaggcagaaccacaagcacat...
...RRRSSSSSSSSSSSSTTTTTTTTTTTTRRR...RLLLLLUUUUUUUTTTTTRRRRRRRRSSSUUUUUUUUUTTTRRR...

Figure 4: Original alignment (top) and recombinant alignment (bottom)

our algorithm development inHaskell, thus providing exe-
cutable specifications at early stages of the development. The
price to be paid amounts to some minor changes in notation:
The most obvious change is that we write function applica-
tion in the formf x y or (f x y) if necessary, rather than
f(x,y) . The expressionf(x,y) is now seen as a call to a
function with a single argument, which is a value pair. Prefix
function symbols always take precedence over infix operators
like ||| .

This section imports the basic definitions from the previous
ones; these are not repeated here. Otherwise, the lines marked
> constitute a complete and executable program4. Given to-
day’s compiler technology, lazy functional languages come
with a certain overhead in computation time and (more dra-
matically) memory space. A functional language implemen-
tation of the algorithm will often not achieve the efficiency
that is eventually required in practice. But still, having an
executable version around is an invaluable advantage during
program development; we will return to this in Section 3.12.

3.5 Step 1: The Recombinant Alignment Alge-
bra

Our first step is to design the algebra representing recombi-
nant alignments. The general alignment algebra introduced
earlier is now extended by new operatorsL andS to represent
recombinant deletions and insertions, respectively. We call it
the recombinant alignment algebra.
> data Ali= R Base Ali Base |
> D Region Ali |
> I Ali Region |
> L Region Region Region Ali Region |
> S Region Ali Region Region Region |
> E

3.6 Step 2: Evaluation Algebras

The Scoring Algebra Our approach allows a general cost
function; however, we will use affine costs, mimicking the
defaults of ClustalW (Thompson et al., 1994).
> match a b = if a == b then 0 else case (a,b) of

4In fact, the LATEXsource of this section is an executableHaskellscript.

> (’a’,’g’) -> 1
> (’a’,’c’) -> 3
> (’a’,’t’) -> 3
> (’g’,’a’) -> 1
> (’g’,’c’) -> 3 -- and so on

> clust_alg = (fE, fR, fD, fI, fL, fS, h) where
> fE = 0
> fR a x b = x + match a b
> fD (i,j) x = x + open + fromInt(j-i)*extend
> fI x (i,j) = x + open + fromInt(j-i)*extend
> fL (i,j) (u,u’) _ x _ =
> x + ropen (i,j) + fromInt(u’-u)*rextend
> fS (i,j) x _ (u,u’) _ =
> x + ropen (i,j) + fromInt(u’-u)*rextend
> h x = [minimum x]

> open = 5.0
> extend = 0.2
> ropen (i,j) = open/fromInt(j-i)
> rextend = extend

Scores are floatingpoint values (andfromInt denotes type
conversion). This cost algebra gives a strong preference to
recombinant insertions and deletions with a long target site
duplication by dividing the gap opening cost by the length
of the target site. Also, note that the duplication of the target
site is not scored at all, i.e. it does not contribute to the length-
dependent score of the insert.

3.7 Step 3: A Grammar for Well-Formed Re-
combinant Alignments

The data typeAli is not specific enough to describe ex-
actly all meaningful alignments. For example, it allows to
represent two subsequent insertions, which should rather be
merged into a single, longer insertion.

We therefore introduce a grammar generating exactly the
well-formed alignments. The blackboard version is shown
in Figure 5.

The three occurrences ofregion in the productions asso-
ciated withS andL must all derive the same nucleotide se-
quence. Furthermore, target sites must extend maximally to
the right. These two properties are checked by the predicates
tsdup andmaximal .

An Application 10

recomb_grammar = axiom ali where
ali = match ||| D <<< region ˜˜˜ noDel ||| I <<< noIns ˜˜˜ region
noDel = match ||| I <<< match ˜˜˜ region
noIns = match ||| D <<< region ˜˜˜ match
match = E <<< empty

||| R <<< xbase ˜˜˜ ali ˜˜˜ ybase
||| ((S <<< region ˜˜˜ noIns ˜˜˜ region ˜˜˜ uregion ˜˜˜ region)

‘suchthat‘ tsdup) ‘suchthat‘ maximal
||| ((L <<< region ˜˜˜ uregion ˜˜˜ region ˜˜˜ noDel ˜˜˜ region)

‘suchthat‘ tsdup) ‘suchthat‘ maximal

Figure 5: The grammar for recombinant alignments in blackboard notation. The new terminal symboluregion repre-
sents a possibly empty region (the insert). A newsuchthat clause is used to associate syntactic restrictions with regions
representing target sites and their duplications.

3.8 Step 4: Implementing Recognition

For implementing the recognizer, the operators in the gram-
mar need to be refined as explained in Section 2.6. Besides
this, we need a parser foruregion , and a definition of
suchthat .
> uregion (i,j) = [(i,j) | i <= j]
> suchthat q f (i,j) = [s | s <- q (i,j), f s]

The code for the predicatestsdup andmaximal is straight-
forward and not shown.

3.9 Step 5: Tabulation and Abstraction

For indicating tabulation, there is a change in notation, since
Haskelldoes not allow the convenience of using the array in-
dexing symbol! when specifying a tabulated function. We
therefore define a functiontabulated that tabulates a func-
tion, such thatp = tabulated q can be written instead
of the earlierp! = q . Tabulation is introduced for the non-
terminal symbolsali , noDel , noIns , recombIns , and
recomDel . Tabulation is not required for the nonterminal
match , as this parser only performs a constant amount of
work on each call.

Finally, we make the evaluation algebra a parameter of the
grammar, obtaining the first version of a DP algorithm that
calculates recombinant alignments under arbitrary evaluation
algebras. See Figure 6.

3.10 Step 5a: Optimization to yield an
O(n3)Implementation

The evaluator so obtained runs inO(n2) space and inO(n6)
time, due to the four occurrences of+˜˜ and ˜˜+ in the
productions associated with recombinant insertions and dele-
tions. This problem requires some algorithmic imagination,
not covered by the ADP method. The result, however, is
easily expressed via a transformed grammar, such that only
one+˜˜ operator remains in each production. Finally, repeat

precomputation inO(n2) is used instead of checking after-
wards for target site duplication and maximality. For lack of
space, these refinements can not be shown here; for details
see (Giegerich et al., 1999). As a result, the evaluator runs
in O(n3) time andO(n2) space, using arbitrary scoring func-
tions.

3.11 Step 6: Deriving DP recurrences

Dynamic programming recurrences were derived from the
improved abstract evaluator combined with the scoring alge-
bra, as explained in Section 2.9, and implemented in C.

3.12 Experiences in Program Development

Having worked with ADP before, and with the suitable com-
binators available, it was a matter of two hours to define the
recombinant alignment data type, the grammar and the eval-
uation algebras, to arrive at (almost) the evaluator in Step 5.
Although extremely slow, it could be run on small artificial
examples, and was used to discuss the modelling with the co-
operating biologist. This led to the observation that it was
sufficient to considermaximal target site duplications, and
this restriction was readily added. Coming up with the im-
proved parsers required some new algorithmic ideas, not cov-
ered by the ADP method. The resultingHaskellprogram, as
obtained after Step 5a, was able to analyse some small sets
of real data, further fostering our confidence in the validity
of the approach. The derivation of DP recurrences was done
independently by a senior researcher and a graduate student,
who cross-checked their results. Their implementation in C
by the student required three days of work, including debug-
ging. The functional program helped to spot errors in the
C program that might otherwise have gone unnoticed. First
measurements show that the C-program runs faster than the
compiled Haskell program by a factor of 68, while using
2% of the space. Still — we feel that this route of devel-
opment has saved several weeks of programming, testing and
re-programming. Of course, this is subjective evaluation, but

Discussion 11

> dp_alignments alg = axiom (p ali) where
> (fE, fR, fD, fI, fL, fS, h) = alg
> ali = tabulated(match ||| fD <<< region +˜˜ (noDel!) ||| fI <<< (noIns!) ˜˜+ region ... h)
> noDel = tabulated(match ||| fI <<< match ˜˜+ region ... h)
> noIns = tabulated(match ||| fD <<< region +˜˜ match ... h)
> match = fE ><< empty ||| fR <<< xbase -˜˜ (ali!) ˜˜- ybase |||

(recombIns!) ||| (recombDel!) ... h
> recombIns = tabulated(((fS <<< region +˜˜ (noIns!) ˜˜+ region ˜˜+ uregion ˜˜+ region)
> ‘suchthat‘ tsdup) ‘suchthat‘ maximal ... h)
> recombDel = tabulated(((fL <<< region +˜˜ uregion +˜˜ region +˜˜ (noDel!) ˜˜+ region)
> ‘suchthat‘ tsdup) ‘suchthat‘ maximal ... h)

Figure 6: The executable first prototype of a dynamic programming algorithm for recombinant sequence alignment.

note that the maximality restriction was found only after run-
ning the prototype, and we see no way to achieveO(n3) with-
out it. A direct approach to an efficient DP algorithm might
have been a futile effort.

4 Discussion

4.1 Related Work

The advantages of adeclarative approach to biosequence
analysishave been explicated most influentially by Searls
(Searls, 1988; Searls, 1989; Searls and Murphy, 1995). In
his recent review (Searls, 1997), Searls discusses different ap-
proaches to the gene prediction problem in the presence of in-
trons. Although gene structure can be described by a context
free grammar and hence can be recovered by parsing meth-
ods, Searls feels that DP methods such as used in (Gelfand
and Roytberg, 1993; Snyder and Stormo, 1993) may have an
inherent efficiency advantage:

“Although parsing of context-free languages
can be performed with similar efficiency, the prob-
lem of examining all parses, where there may be
an exponential number of them, may be intractable
even so.” (Searls, 1997)

This fear of exponential explosion is appropriate as long as
we keep the parsing and the examination phase separate. But
Algebraic Dynamic Programming amalgamates the phases,
such that the grammar based and the DP approach achieve
the same asymptotic efficiency. As a yield grammar can be
transformed into DP recurrences by straightforward formula
manipulation, they should no longer be seen as competing
methods. Rather, the grammar based approach must be rec-
ognized as the explanation of the DP approach on a higher
level of abstraction.

Lefebvre has used parsing techniques andattributed con-
text free grammarsfor sequence alignment and RNA folding
(Lefebvre, 1995; Lefebvre, 1996). This has resulted in a fold-

ing program based on energy minimization and parser gener-
ation technology. It has been reported to achieve efficiency
similar to DP algorithms. With sophisticated parsing tech-
niques used in place of dynamic programming, the method is
more amenable to be used by compiler writing specialists.

Stochastic context free grammarshave been used intensively
in the area of RNA folding and modeling of RNA families
(Eddy and Durbin, 1994; Sakakibara et al., 1994). Calcu-
lating probabilities is just a particular way of scoring. In
our framework, a stochastic grammar is expressed by a yield
grammar, called with a stochastic evaluation algebra that mul-
tiplies probabilities along a derivation, and adds probabilities
of alternative derivations. Stochastic context free grammars
are typically implemented via the Cocke-Younger-Kasami
algorithm (Aho and Ullman, 1972), which is essentially a
dynamic programming scheme formulated for context free
grammars in Chomsky normal form. Our parser combina-
tors can be seen as an (albeit late) justification of the CYK
algorithm by deriving its recurrences from a nondeterminis-
tic, recursive parser. Our combinator parsers do not require
a normal form, but the width reduction transformation intro-
duced in (Giegerich, 1998) can be used to achieve a similar
form where desired for the sake of efficiency.

Stochastic regular grammarsare equivalent tohidden Markov
models, which come along with their own terminology, liv-
ing “in happy ignorance of the Chomksy hierarchy” (Durbin
et al., 1998). The regular case in ADP is a yield grammar that
makes no use of the+˜˜ and thẽ ˜+ operator; beyond this, it
requires no special treatment to reachO(n2) time efficiency.

The Dynamite system (Birney and Durbin, 1997) provides a
code generation language for dynamic programmingrecur-
rences, while our approach is concerned with their develop-
ment. Although the system can be of great benefit to the
expert, it has not (yet) found the widespread use one might
expect. One reason certainly is that the development of cor-
rect dynamic programming recurrences is at least as difficult
as their faithful implementation in (say) C. Our approach and
the Dynamite system are complementary — we may feed Dy-

Discussion 12

namite with DP recurrences derived via ADP.

It can be quite instructive to re-derive the recurrences of
a published DP algorithm via ADP. DP algorithms often
are somewhat pragmatic about the SUEs actually evaluated.
Some SUEs may be evaluated several times, and there may
even be some mal-formed ones being scored, as long as the
scoring functions guarantee that they never score optimally.
In such cases, the recurrences cannot be used to calculate
statistics about SUEs, and enumerating near-optimal solu-
tions may produce a few surprises. By contrast, a carefully
designed grammar leads to a few extra tables to be calcu-
lated — increasing space requirements by a constant factor,
but with the advantage that recurrences will work correctly
with any evaluation algebra, including counting and enumer-
ation of near-optimal solutions.

4.2 Scope of the Algebraic Dynamic Program-
ming Method

This is the inevitable problem of advocating programde-
velopmentmethods: To introduce a new method, examples
should be simple. But are they convincing? Small exam-
ples can always be solved without much systematics, so why
bother? We hope that the reader has caught on to the essence
of the method, and can extrapolate the benefits gained in a
context where numerous or more complicated problems have
to be solved.

Let us summarize a few points that delineate the scope of the
ADP approach. The line of thought goes from more theoreti-
cal to most pragmatic concerns.

From theprogramming methodologyperspective, it is nice
to have an explanation of Dynamic Programming as a com-
pound of simpler techniques — parsing, tabulation, and al-
gebraic evaluation. This view seems to apply generally, even
in cases where the parsing problem lies beyond context free
languages.

Theparser combinators are domain specific: RNA folding or
gene recognition takes a single input sequence, while (pair-
wise) alignment takes two. Parser combinators must be ad-
justed to this, which is a simple exercise. Once defined, they
can be re-used for many different analyses in the same prob-
lem domain. The declarative understanding of the grammar
framework suffices for developing new analyses.

Flexibility is another strength of the ADP method. Although
it proposes a rather rigid way of approaching a DP problem,
it easily adapts to problem peculiarities without compromis-
ing the overall transparency. The lookahead-based parser for
recombinant deletions and insertions is a case in point.

Someintellectual overheadis always involved in adopting a
formal method like ADP. But any experienced “DP hacker”

will appreciate that in the form of the annotated grammar
and an evaluation algebra, we have an algorithm specification
where our ideas are lucidly expressed.

Such anexecutable specificationis invaluable in program de-
velopment. It should be used whenever a functional program-
ming language is available. The grammar is a functional pro-
gram that tends to be correct from the start - no subscripts,
no errors. If there is something wrong with the grammar, it is
most likely an error in our modelling of the problem domain,
and we are fortunate to catch it early.

Theultimate derivation of DP recurrencesshould be done not
by the developer of the algorithm (a particularly nice aspect),
but rather by two independent persons. Their results should
be cross-checked before implementing them in an imperative
programming language.

In program testing, the prototype is just as useful. Implemen-
tations in (say) C are most effectively validated by comparing
their results (via another program, of course) to those of the
Haskellprogram. Who else would you trust that the selected
alignment is truly optimal?

4.3 Other Applications and Future Work

For educational purposes, the ADP method has been applied
to classical problems, like global and local alignment, pat-
tern alignment, and a new way of evaluating alignment am-
biguity. This is summarized in (Giegerich, 1999), where also
some generalizations are discussed. The extension of the edit
distance model to accommodate recombinant alignments is
discussed in more detail in (Giegerich et al., 1999). A pat-
tern language to describe motifs in RNA secondary structure
is sketched in (Evers et al., 1999), where motifs are essen-
tially described via (sub-)grammars. RNA folding is stud-
ied in detail in (Giegerich, 1998), where the ADP method
was originally developed. (However, the algebraic nature of
the approach is worked out more succinctly in the present
treatment.) The full energy minimization algebra for RNA
folding has recently been implemented by D. Evers, and
will be used to tackle the problem of folding saturated RNA
structures, which has been suggested in 1984 (Zuker and
Sankoff, 11984) and is still unsolved. To delineate the power
of ADP, parser combinators using lookahead or other addi-
tional information should be studied systematically. Another
goal of our work is a technique to directly translate annotated
yield grammars into C, obviating the need to derive the ex-
plicit matrix recurrences at all. In this sense, some day we
may be able to do dynamic programmingwithout DP recur-
rences.

References 13

Acknowledgement The original incentive of this work
came from discussions with Gene Myers on yet another set of
recurrences for RNA folding. Stefan Kurtz accompanied this
work with valuable advice at all stages. Dirk Evers demon-
strated that ADP scales up to large problems by implementing
a suitable grammar and the full energy minimization algebra
for RNA folding. Everything I know about recombination I
learned from Georg Weiller. Matthias H¨ochsmann and Stefan
Kurtz derived the DP recurrences for the recombinant align-
ment program, and M. H¨ochsmann did the C implementa-
tion. Then referees’ comments have substantially helped to
improve the presentation.

References

Aho, A. V. and Ullman, J. D. (1972).The Theory of Pars-
ing,Translation, and Compiling, Prentice Hall.

Anson, E. L. and Myers, G. W. (1997). Realigner: A program
for refining DNA sequence multi-alignments,1st Con-
ference on Computational Molecular Biology, pp. 9–16.

Barendregt, H. P. (1984).The Lambda Calculus: Its Syntax
and Semantics, Studies in Logic and the Foundations of
Mathematics, North-Holland. 2nd edition.

Bird, R. (1998). Introduction to Functional Programming
using Haskell, 2nd edition edn, Prentice Hall Press.

Birney, E. and Durbin, R. (1997). Dynamite: A flexible code
generating language for dynamic programming meth-
ods, Proc. Intelligent Systems for Molecular Biology,
AAAI Press, Menlo Park, CA, USA, pp. 56–64.

Brainerd, W. (1969). Tree generating regular systems,Infor-
mation and Control14: 217–231.

Cormen, T. H., Leiserson, C. E. and Rivest, R. L. (1989).
Introduction to Algorithms, The MIT Press, Cambridge,
MA, USA.

Durbin, R., Eddy, S., Krogh, A. and Mitchison, G. (1998).
Biological Sequence Analysis, Cambridge University
Press.

Eddy, S. and Durbin, R. (1994). RNA sequence analysis using
covariance models,Nucleic Acids Res.22(11): 2079–
2088.

Evers, D., Giegerich, R. and Kurtz, S. (1999). A general pat-
tern matching language for specific motifs in RNA sec-
ondary structure,Proc. of the 4th European Conference
on Theory and Mathematics in Biology and Medicine.

Gelfand, M. S. and Roytberg, M. A. (1993). A dynamic
programming approach for predicting the exon-intron
structure,Biosystems30: 173–182.

Giegerich, R. (1990). Code Selection by Inversion of Order-
Sorted Derivors,Theor. Comput. Sci.73: 177–211.

Giegerich, R. (1998). A declarative approach to the develop-
ment of dynamic programming algorithms, applied to
RNA folding, Report 98–02, Technische Fakult¨at, Uni-
versität Bielefeld.

Giegerich, R. (1999). Towards a discipline of dynamic pro-
gramming in bioinformatics. Parts 1 and 2: Sequence
comparison and RNA folding,Report 99–05, Technis-
che Fakultät, Universität Bielefeld. (Lecture Notes).

Giegerich, R., Kurtz, S. and Weiller, G. F. (1999). An alge-
braic dynamic programming approach to the analysis of
recombinant DNA sequences,Proc. of the First Work-
shop on Algorithmic Aspects of Advanced Programming
Languages, pp. 77–88.

Gotoh, O. (1982). An improved algorithm for matching bio-
logical sequences,J. Mol. Biol.162: 705–708.

Gusfield, D. (1997).Algorithms on Strings, Trees, and Se-
quences, Computer Science and Computational Biol-
ogy, Cambridge University Press.

Gusfield, D. (ed.) (1994).Proceedings of the Fifth Annual
Symposium on Combinatorial Pattern Matching, Asilo-
mar, California, June 1994, Lecture Notes in Computer
Science807, Springer Verlag.

Hofacker, I. L., Schuster, P. and Stadler, P. F. (1999). Combi-
natorics of rna secondary structures,Discr. Appl. Math
89: 177–207.

Hutton, G. (1992). Higher Order Functions for Parsing,Jour-
nal of Functional Programming3(2): 323–343.

Kurtz, S. and Myers, G. W. (1997). Estimating the probabil-
ity of approximate matches,Proceedings of Combinato-
rial Pattern Matching 1997, Springer Lecture Notes in
Computer Science 1246.

Lefebvre, F. (1995). An optimized parsing algorithm well
suited to RNA folding,Proc. of the Third Conference
on Intelligent Systems for Molecular Biology, ISMB 95,
AAAI Press, Menlo Park, CA, USA, pp. 222–230.

Lefebvre, F. (1996). A grammar-based unification of sev-
eral alignment and folding algorithms,Proceedings 4th
ISMB, AAAI Press, Menlo Park, CA, USA, pp. 143–
154.

References 14

Needleman, S. B. and Wunsch, C. D. (1970). A general
method applicable to the search for similarities in the
amino acid sequence of two proteins,J. Mol. Biol.
48: 443–453.

Sakakibara, Y., Brown, M., Hughey, R., Mian, I. S.,
Sjölander, K., Underwood, R. C. and Haussler, D.
(1994). Recent methods for RNA modeling using
stochastic context-free grammars, (Gusfield, 1994),
pp. 289–306.

Searls, D. B. (1988). Representing genetic information with
formal grammars,Proceedings of the 1988 National
Conference of the American Association for Artificial
Intelligence, pp. 386–391.

Searls, D. B. (1989). Investigating the linguistics of dna
with definite clause grammars,Proceedings of the North
American Conference on Logic Programming, MIT
Press, pp. 189–208.

Searls, D. B. (1997). Linguistic approaches to biological se-
quences,CABIOS13(4): 333–344.

Searls, D. B. and Murphy, K. P. (1995). Automata-theoretic
models of mutation and alignment,Proc. of the Third
Conference on Intelligent Systems for Molecular Biol-
ogy, ISMB 95, AAAI Press, Menlo Park, CA, USA,
pp. 341–349.

Smith, T. F. and Waterman, M. S. (1981). Comparison of
biosequences,Adv. Appl. Math.2: 482–489.

Snyder, E. E. and Stormo, G. D. (1993). Identification of cod-
ing regions in genomic DNA: an application of dynamic
programming and neural networks,Nucleic Acids Res.
21: 607–613.

Thompson, J. D., Higgins, D. G. and Gibson, T. J. (1994).
CLUSTAL W: Improving the sensitivity of progressive
multiple sequence alignment through sequence weight-
ing, position-specific gap penalties and weight matrix
choice,Nucleic Acids Res.22(22): 4673–4680.

Waterman, M. S. (1995).Introduction to Computational Biol-
ogy. Maps, Sequences and Genomes, Chapman & Hall,
London, UK.

Weiller, G. F. (1998). Phylogenetic profiles: a graphical
method for detecting genetic recombinations in homol-
ogous sequences,Mol. Biol. Evol.15(3): 326–335.

Zuker, M. (1989). On finding all suboptimal foldings of an
RNA molecule,Science244: 48–52.

Zuker, M. and Sankoff, S. (11984). RNA secondary structures
and their prediction,Bull. Math. Biol.46: 591–621.

