
Matching and Significance Evaluation of

combined Sequence-Structure Motifs in RNA

Carsten Meyer, Robert Giegerich

Faculty of Technology, Bielefeld University
33501 Bielefeld, Germany

{cmeyer,robert}@techfak.uni-bielefeld.de

Abstract. The discipline of Algebraic Dynamic Programming is a pow-
erful method to design and implement versatile pattern matching algo-
rithms on sequences; here we consider mixed sequence and secondary
structure motifs in RNA. A recurring challenge when designing new pat-
tern matchers is to provide a statistical analysis of pattern significance.
We demonstrate that by the use of so-called canonical pattern descrip-
tions, the expected number of hits on a sequence of length n can be
computed a priori, using the pattern matcher itself. This provides a sys-
tematic way to calibrate the specificity of pattern matching algorithms.
The technique is exemplified by examples using IRE and SECIS elements.

1 Motivation and Overview

1.1 Evaluation of Pattern Significance

Significance of standard patterns. A mathematical evaluation of the sig-
nificance of hits is essential in all pattern matching applications. For
simple sequence patterns, the approach of [2], implemented in the tool
Verbumculus, provides a complete analysis of over- and underrepresented
words in a sequence. The E-values computed by the BLAST programs [1]
for sequence similarity search give an account of how small the probabil-
ity is to find a given match by chance. Similarly, the REPuter tool [24]
provides significance scores in the analysis of approximate repeats and
palindromes in genome data.

Significance analysis of general patterns. Sequence subwords, local sim-
ilarity and repeats are rather elementary patterns. In searching for, say,
regulatory elements in RNA, we need all of the above, and more: We
design patterns that adhere to a structural shape, may carry some well
defined sequence motifs, but else allow considerable variation in both se-
quence and structure. When designing such a motif description, a central
problem is to balance specificity against variation, or in statistical terms:
to analyse Em(n, c), the expected number of hits of the motif m on a
random sequence of length n and base composition c.

Note that Em(n, c) is a property of the motif, in contrast to a BLAST
E-value that rates a particular motif instance. Although an analysis of

statistical significance is highly desirable in all pattern matching applica-
tions, it is a separate mathematical effort, and often non-trivial. In fact,
for the two complex motifs studied in this paper, pattern matching al-
gorithms have been published without addressing this problem at all [8]
[22].

A general approach to calculate probabilities of pattern matches was
presented in [29]. The class of patterns is restricted compared to the ap-
proach presented below; and Staden calculates the probability of a match
achieving a particular integer score value, rather than the expected num-
ber of matches. While the basic approach has much in common, the way
to reach the goal is quite different. Staden uses the technique of proba-
bility generating functions, independent of the pattern search algorithm
that may be employed. We advocate a programmer’s approach, asking for
a programm that can compute Em(n, c). We show that the motif descrip-
tion can be designed in such a way that the resulting pattern matcher
itself can compute Em(n, c) a priori. The central prerequisite is to pro-
vide non-ambiguous motif descriptions within the framework of Algebraic
Dynamic Programming (ADP) [15].

1.2 Ambiguity Issues in Dynamic Programming

Dynamic Programming (DP) solves combinatorial optimization problems.
It is a classical programming technique throughout computer science [6],
and plays a dominant role in computational biology [9, 17]. A typical DP
problem spawns a search space of potential solutions in a recursive fash-
ion, from which the final answer is selected according to some criterion
of optimality. If an optimal solution can be derived recursively from op-
timal solutions of subproblems [3], DP can evaluate a search space of
exponential size in polynomial time and space.

Sources of Ambiguity. By ambiguity in dynamic programming we refer
to the following facts which complicate the understanding and use of DP
algorithms. They are bound to recur with every new design of a pattern
matching algorithm based on this implementation technique.

– Co-optimal and near-optimal solutions: It is well known that the “op-
timal” solution found by a DP algorithm normally is not unique, and
there may be relevant near-optimal solutions. A single, “optimal”
answer is often unsatisfactory. Considerable work has been devoted
to this problem, producing algorithms providing near-optimal [25, 27]
and parametric [18] solutions.

– Duplicate solutions: While there is a general technique to enumerate
all solutions to a DP problem (possibly up to some threshold value)
[32, 33], such enumeration is hampered by the fact that the algorithm
may produce the same solution several times – and in fact, this may

lead to combinatorial explosion of redundancy. Heuristic enumeration
techniques, and post-factum filtering as a safeguard against duplicate
answers are employed e.g. in [34].

– (Non-)canonical solutions: Often, the search space exhibits additional
redundancy in terms of solutions that are represented differently, but
are equivalent from a more semantic point of view. Canonization is im-
portant in evaluating statistical significance [23], and also in reducing
redundancy among near-optimal solutions.

Ambiguity examples. Strings aaaccttaa and aaaggttaa are aligned be-
low. Alignments (1) and (2) are equivalent under most scoring schemes,
while (3) may even be considered a mal-formed alignment, as it shows
two deletions separated by an insertion.

aaacc--ttaa aaa--ccttaa aaac--cttaa

aaa--ggttaa aaagg--ttaa aaa-gg-ttaa

(1) (2) (3)

In the RNA folding domain, each DP algorithm seems to be a one-trick
pony. Different recurrences have been developed for counting or estimat-
ing the number of various classes of feasible structures of a sequence of
given length [20], for structure enumeration [33], energy minimization [36],
and base pair maximization [28]. Again, enumerating co-optimal answers
will produce duplicates in the latter two cases.

Canonicity and statistical significance. The atomic patterns in RNA mo-
tifs are (un-gapped) sequence patterns and base pairings. For both of
these, their individual significance can be evaluated when the base com-
position (the share of nucleotides A,C,G,U) of the data is known. The
work presented here is based on two observations:

1. If the motif description takes care that each larger motif is composed
from smaller ones in a non-ambiguous way, the significance of a com-
posed motif can be computed from the significance of its constituents.

2. If the pattern matcher implementing the motif search finds each mo-
tif exactly once, then this very program can be used for computing
Em(n, c) given only n and c, instead of a specific sequence.

Structure of this paper. In the first part of this paper (Sections 2 and
3) we give a rather short review of the technique of Algebraic Dynamic
Programming, and introduce the notion of canonical pattern descriptions
in ADP. The former can be found with more detail in [15] and (in tutorial
form) in [11]. The latter aspect is studied in more detail in [16]. In the
second part (Section 4), we develop canonical pattern descriptions for
two RNA motifs, the Iron Responsive Element and the Selenocysteine
Insertion Sequence.

2 A Short Review of Algebraic Dynamic Programming

ADP introduces a conceptual splitting of a DP algorithm into a recog-
nition and an evaluation phase. A yield grammar is used to specify the
recognition phase (i. e. the search space of the optimization problem). A
particular parsing technique turns the grammar directly into an efficient
dynamic programming scheme. The evaluation phase is specified by an
evaluation algebra, and each grammar can be combined with a variety of
algebras to solve different problems over the same data domain, for which
heretofore DP recurrences had to be developed independently.

2.1 Basic Notions

Let A be an alphabet. A∗ denotes the set of finite strings over A, and
++ denotes string concatenation. Throughout this article, x ∈ A∗ denotes
the input string and |x| = n. A subword is indicated by its boundaries
– x(i,j) denotes xi+1...xj . When T is an arbitrary data type, [T] denotes
the data type of all lists with elements from T , and [] denotes the empty
list.

An algebra is a set of values and a family of functions over this set.
We allow that these functions take additional arguments from A∗. An
algebraic data type T is a type name and a family of typed function
symbols, also called operators. It introduces a language of (well-typed)
formulas, called the term algebra. An algebra that provides a function for
each operator in T is a T -algebra. The interpretation tI of a term t in
a T -algebra I is obtained by substituting the corresponding function of
the algebra for each operator. Thus, tI evaluates to a value in the base
set of I.

Terms as syntactic objects can be equivalently seen as trees, where
each operator is a node, which has its subterms as subtrees. Tree gram-
mars over T describe specific subsets of the term algebra. A regular tree
grammar over T [5, 14] has a set of nonterminal symbols, a designated
axiom symbol, and productions of the form X → t where X is a nonter-
minal symbol, and t is a tree pattern, i.e. a tree over T which may have
nonterminals in leaf positions.

2.2 ADP – the Declarative Level

structure
Simple hairpin

��
��
��
��

c

c

u g

u

��
��
��
��

g

a

g

g

ua a

��
��
��
��

a

In the sequel, we assume that T is some fixed
data type, and A a fixed alphabet. As a run-
ning example, let A = {a, c, g, u}, represent-
ing the four bases in RNA, and let T consist of
the operators sr, hl, bl, br, il, represent-
ing structural elements in RNA: stacking re-
gions, hairpin loops, bulges on the left and right
side, and internal loops. Feasible base pairs are a
- u, g - c, g - u. The little hairpin denoted
by the term

Hairpin in

representation
term

sr

c

aaa

gugu

g

c

hl

a u

sr

bl

g

s = sr ’c’ (sr ’c’ (bl "aaa" (hl ’a’ "gugu" ’u’)) ’g’) ’g’

is one of many possible secondary structures of the RNA sequence ccaaaaguguugg.

Definition 1 (Evaluation Algebra). An evaluation algebra is a T -
algebra augmented by an objective function h of type [s] → [s], where s
is the base set. We require h(l) to be polynomial in |l|. Furthermore, h is
called reductive if |h(l)| is bounded by a constant.

In standard applications, the objective h is minimization or maximiza-
tion, but, as we shall see, it may also be counting, estimation, or any other
kind of synopsis. The reductivity of h makes a DP algorithm run in poly-
nomial rather than in exponential time. Non-reductive choice functions
are used e.g. for complete enumeration, where h is the identity function.
The hairpin s evaluates to 3 in the basepair algebra, and (naturally) to 1
in the counting algebra:
basepair_alg = (sr,hl,bl,br,il,h) counting_alg = (sr,hl,bl,br,il,h)

where sr _ x _ = x+1 where sr _ x _ = x

hl _ x _ = 1 hl _ x _ = 1

bl _ x = x bl _ x = x

br x _ = x br x _ = x

il _ x _ = x il _ x _ = x

h = maximum h = sum

Definition 2 (Yield Grammar). A yield grammar (G, y) is given by

– an underlying algebraic datatype T , and alphabet A,
– a homomorphism y : T → A∗ called the yield function,
– a regular tree grammar G over T .

L(G) denotes the tree language derived from the axiom, and Y(G) :=
{y(t)| t ∈ L(G)} is the yield language of G.

The homomorphism condition means that y(Cx1...xn) = y(x1)++...++y(xn)
for any operator C of T . For the hairpin s, we have y(s) = ccaaaaguguugg.
By virtue of the homomorphism property, we may apply the yield func-
tion to the righthand sides of the productions in the tree grammar. In this
way, we obtain a context free grammar y(G) such that Y(G) = L(y(G)):
Yield languages are context-free.

Definition 3 (Yield Parsing). The yield parsing problem of (G, y) is
to compute for a given x ∈ A∗ the set of all t ∈ T such that

y(t) = x.

Definition 4 (Algebraic Dynamic Programming). Let I be a T -
algebra with a reductive choice function hI . Algebraic Dynamic Program-
ming is computing for given x ∈ A∗ the set of solutions

hI{tI | y(t) = x} in polynomial time and space.

This definition precisely describes a class of DP problems over sequences.
All DP algorithms in biosequence analysis we have studied so far can be
cast in the ADP framework.

2.3 ADP – the Notation

Once a problem has been specified by a yield grammar and an evalua-
tion algebra, the ADP approach provides a systematic transition to an
efficient DP algorithm that solves the problem. To achieve this, we in-
troduce a notation for yield grammars that is both human readable and
— executable! It is this language in which motif descriptions in Section
4 will be expressed. In ADP notation, yield grammars are written in the
form
hairpin = axiom struct where

struct = open ||| closed

open = bl <<< region ~~~ closed |||

br <<< closed ~~~ region |||

il <<< region ~~~ closed ~~~ region

The grammar hairpin has axiom struct and further nonterminal sym-
bols open and closed. Terminal symbol base denotes an arbitrary base,
and region a nonempty sequence of bases from the RNA alphabet. The
grammar notation is refined further by allowing predicates and the objec-
tive function to be associated with nonterminal symbols and productions:
closed =

((hl <<< base ~~~ (region ‘with‘ minsize 3) ~~~ base |||

sr <<< base ~~~ (closed ||| open) ~~~ base) ‘with‘ basepair) ... h

This production uses two predicates: minsize k requires a yield of mini-
mal length k, and basepair, which applies to both alternatives, requires
that the bounding bases of either closed structure form a feasible base
pair. The objective function h is attached via the ...-combinator, indi-
cating that from several alternative closed structures, a synopsis according
to h is imposed.

In the syntactic view of yield grammars, we interpret the operators
hl, sr,... in the term algebra. They merely construct terms or trees
representing hairpins. In this view, the objective function h has little use

and should be assumed to be the identity function. However, in a more se-
mantic view, we see hl, sr,... as functions of some evaluation algebra.
Then, the “trees” generated by the grammar are actually formulas that
can be evaluated. In this view, the grammar is a mechanism to generate a
set of values, and it makes sense to apply the algebra’s objective function
to select (say) a maximal one.

2.4 ADP – the Implementation Level

We now solve the yield parsing problem. A nondeterministic, top-down
parser for a context-free grammar is obtained by the combinator technique
of [21]. This idea is adapted to yield grammars. A yield parser pN for
nonterminal N takes a subword (i, j) of x as its argument and returns
the set pN(i, j) = {t|y(t) = x(i,j)}. Technically, it returns a list; when the
list is empty, we say that the parser fails. Where the operators of T take
strings from A∗ as their arguments, suitable parsers must be provided.

The grammar itself is turned into a parser by defining the combinators
as higher-order functions which compose complex parsers from simpler
ones. For the sake of completeness, definitions are given here, but space
does not allow a thorough discussion. We use list comprehension notation
borrowed from the functional programming language Haskell.
(r ||| q) (i,j) = r(i,j) ++ q(i,j)

(f <<< q) (i,j) = [f z | z <- q(i,j)]

(r ~~~ q) (i,j) = [f y | k <- [i+1..j-1], f <- r(i,k), y <- q(k,j)]

(r ... h) (i,j) = h(p(i,j))

axiom q = q(0,n)

(r ‘with‘ w) (i,j) = if w(i,j) then r(i,j) else []

Note that the axiom- and the with-clause are also defined as higher or-
der functions applied to parsers. With these definitions, a grammar like
hairpin is now an executable yield parser, albeit of miserable efficiency:
There may be an exponential number of parses, and any subparse is con-
structed many times. This is alleviated by tabulating the parser functions.
Let p be a table indexing function and tabulated be a tabulation function
such that

p (tabulated f) (i,j) = f(i,j), or equivalently

p (tabulated f) = f

With this convention, a grammar may be annotated for efficiency, replac-
ing parsers by tables. Choosing to tabulate the parser for nonterminal
closed, grammar hairpin now reads
hairpin = axiom struct where

struct = open ||| p closed

open = bl <<< region ~~~ p closed |||

br <<< p closed ~~~ region |||

il <<< region ~~~ p closed ~~~ region

closed = tabulated (

((hl <<< base ~~~ (region ‘with‘ minsize 3) ~~~ base |||

sr <<< base ~~~ (p closed ||| open) ~~~ base) ‘with‘ basepair) ... h)

Such annotation does not affect the meaning of the grammar, nor that
of the parser. It only affects the parser’s efficiency: The parser now uses
dynamic programming. In general, the parser consists of a family of re-
cursively defined tables and functions. Substituting the definitions of the
combinators and the functions of a specific evaluation algebra, the anno-
tated grammar simplifies to a set of recurrences as we traditionally see it
in dynamic programming.

2.5 A Classical DP Algorithm in ADP Notation

Zuker’s Algorithm for RNA folding. Zuker and Stiegler [36] gave a DP
algorithm for determining the minimal free energy structure of an RNA
molecule under the nearest neighbour model. The model and the algo-
rithm have been elaborated considerably since then, but for lack of space,
we base our discussion on the original description. Evers [10] has recently
reformulated Zuker’s recurrences as a yield grammar Gzuker811:

zuker81 algebra inp = axiom struct where

(str,hl,bi,sr,bl,br,il,ol,ox,co,h) = algebra

-- nonterminals v and w are Zuker’s tables V and W.

struct = str <<< p w

v = tabulated (

((hairpin ||| twoedged ||| bifurcation) ‘with‘ basepair) ... h)

hairpin = hl <<< base -~~ (region ‘with‘ minsize 3) ~~- base

bifurcation = bi <<< base -~~ p w ~-~ p w ~~- base ... h

twoedged = stack ||| bulgeleft ||| bulgeright ||| interior ... h

stack = sr <<< base -~~ p v ~~- base

bulgeleft = bl <<< base -~~ region ~-~ p v ~~- base

bulgeright = br <<< base -~~ p v ~-~ region ~~- base

interior = il <<< base -~~ region ~-~ p v ~-~ region ~~- base

w = tabulated (openleft ||| openright ||| p v ||| connected ... h)

openleft = ol <<< base -~~ p w

openright = ox <<< p w ~~- base

connected = co <<< p w ~-~ p w ... h

This grammar uses two essential nonterminals, v and w; the others
are introduced to reflect Zuker’s case analysis. It is quite instructive to
reformulate classical DP algorithms in the uniform ADP framework. Mak-
ing explicit the grammar behind the algorithm helps to clarify properties
relating to ambiguity as well as efficiency.

A gallery of wellknown bioinformatics algorithms (Needleman-Wunsch,
Smith-Waterman, Gotoh and more) is found with [11].

1 This example shows actually executable ADP code, and contains a few refinements
not explained in Section 2. The variants of the ~~~-operator are all equivalent in
the declarative view, but operationally they are special cases with a more efficient
implementation. E.g., ~~- is used when the righthand parser accepts a single base.

3 Ambiguity and Canonicity

3.1 Formalizing Ambiguity and Canonicity

Remember that a context-free grammar G is ambiguous, if there are dif-
ferent leftmost derivations for some x ∈ L(G).

Definition 5 (Yield Grammar Ambiguity). A tree grammar G is
ambiguous if there are different leftmost derivations for some tree t ∈
L(G). A yield grammar (G, y) is ambiguous, if G is ambiguous, otherwise
it is unambiguous. A yield grammar (G, y) is strictly unambiguous, if it
is unambiguous and y is injective.

Strict unambiguity means that for each s ∈ A∗, we have at most one
t ∈ L(G) such that y(t) = s. Hence, we do not have an optimization
problem at all. Strictly unambiguous yield grammars play no part in
dynamic programming.

Canonicity means that all solutions from which we want to choose
an optimal one have a unique representation in the search space. For
example, alignments as shown in Sect. 1.2 could be canonized by requiring
that deletions are arranged always before adjacent insertions. To formalize
canonicity, we must introduce a canonical model as the point of reference.

Definition 6 (Canonical Models and Canonical Yield Grammars).
Let K be a set, the canonical model. Let k be a mapping from L(G) to K.
A yield grammar (G, y) is canonical w.r.t. K and k if it is unambiguous
and the mapping k is bijective. A DP algorithm is canonical w.r.t. K and
k, if the underlying yield grammar is canonical w.r.t. K and k.

The canonical model may exist merely in the mind of the algorithm
designer, but preferably, it should be formulated explicitly, together with
the mapping k.

3.2 Analysing Canonicity

We show that the Zuker algorithm is not canonical. A canonical model for
RNA secondary structures would be sets of properly nested base pairs.
Such a model is too remote from the tree-like representation of RNA
structures. The Vienna notation, encoding a structure as a string of dots
and properly nested parentheses, however, proves to be very convenient.
It can be formally defined as L(V), using the string grammar V = {R →
.|..|S, S → ...|.S|S.|SS|(S)}. Our little hairpin s would be denoted by
the pair ("((...(....)))","ccaaaaguguugg"). The mapping k from
Zuker’s underlying data type Z to L(V) is defined via

k(bi(a, u, v, b) = "(" ++ k(u) ++ k(v) ++ ")"

k(ol(a, v) = "." ++ k(v)
k(co(u, v) = k(u) ++ k(v)
k(ox(u, b) = k(u) ++ "."

Further equations are omitted, as these suffice to prove the equalities
below.

Theorem 1. The Zuker DP algorithm for RNA folding is not canonical
with respect to feasible RNA structures.

Proof. We observe the equalities

k(ol(a, ox(w, b))) = k(ox(ol(a,w), b) (1)
k(co(u, co(v,w))) = k(co(co(u, v), w)) (2)
k(ol(u, co(v,w))) = k(co(ol(u, v), w)) (3)

k(bi(a, u, co(v,w), b)) = k(bi(a, co(u, v), w, b)) (4)
k(bi(a, ox(u, b), w, c)) = k(bi(a, u, ol(b, w), c)) (5)

Either one of these proves that k is not injective.

While equalities (1) and (2) are quite obvious and easy to avoid, (3) – (5)
are more subtle, and there may be more such equalities.

The degree of redundancy incurred by the non-canonical grammar is
demonstrated in Section 3.5. Such redundancy is not an efficiency prob-
lem, as the asymptotic efficiency of a DP algorithm is not affected. How-
ever, it makes it impossible to use the same recurrences for other purposes,
say for the enumeration of all suboptimal solutions. This explains why
Zuker’s algorithm employs an incomplete heuristics when enumerating
suboptimal foldings. Even more, trying to evaluate statistical significance
in the presence of such redundancy yields a property related to the search
algorithm rather than the motif.

3.3 A Canonical Grammar for Canonical RNA Secondary
Structures

Although the energy model permits structures of minimal free energy
with isolated (unstacked) base pairs, there are good biophysical argu-
ments to consider such structures unrealistic. As already noted by Zuker
and Sankoff in [35]2, removing such redundant structures from the search
space is the key to obtaining more significant near-optimal solutions.

Definition 7. An RNA structure without isolated base pairs is canonical.

The canonical model suiting this definition is defined as L(W)×A∗ using
the string grammar W = {R → ε|.|..|S, S → ...|.S|S.|SS|((P)), P →
S|(P)}. (d, s) ∈ K is subject to the restriction that bases in s can pair
as indicated by matching parentheses in d. The following grammar Gc for
canonical RNA structures uses an algebra with several base sets, and an
overloaded objective function h.
2 Zuker and Sankoff suggest an even stronger restriction to structures with maximal

helices. A solution to this problem is presented in [12].

canonicals alg x = axiom struct where

(str,ss,hl,sr,bl,br,il,ml,nil,cons,ul,h) = alg

singlestrand = ss <<< region

struct = str <<< p comps |||

str <<< (ul <<< singlestrand) |||

str <<< (nil ><< empty) ... h

comps = tabulated (cons <<< p block ~~~ p comps |||

ul <<< p block |||

cons <<< p block ~~~ (ul <<< singlestrand) ... h)

block = tabulated (p strong ||| bl <<< region ~~~ p strong ... h)

strong = tabulated (((sr <<< base -~~ (p strong ||| p weak) ~~- base)

‘with‘ basepair) ... h)

weak = tabulated (((hairpin ||| leftB ||| rightB ||| iloop ||| multiloop)

‘with‘ basepair) ... h)

where

hairpin = hl <<< base -~~ (region ‘with‘ minsize 3) ~~- base

leftB = sr <<< base -~~ (bl <<< region ~~~ p strong) ~~- base

rightB = sr <<< base -~~ (br <<< p strong ~~~ region) ~~- base

multiloop = ml <<< base -~~ (cons <<< p block ~~~ p comps) ~~- base

iloop = sr <<< base -~~ (il <<< region ~~~ p strong

~~~ region) ~~- base

The grammar distinguishes substructures closed by a single base pair
(weak) from those closed by at least two stacked pairs (strong). The new
operator ul constructs a singleton list, while cons adds an element to
the front of a list. If we identify the two nonterminals and merge their
productions, an ADP version of the Wuchty et al. DP recurrences [33]
is obtained. Note how the grammar takes care that single strands and
closed components alternate in multiloops, and that multiloops contain
at least two branches.

We now specify the canonical mapping k : L(Gc) → L(W)
k (str cs) = k’’ cs

k (hl b1 r b2) = "(" ++ k’ r ++ ")"

k (sr b1 s b2) = "(" ++ k’ s ++ ")"

k (ml b1 cs b2) = "(" ++ k’’ cs ++ ")"

k (bl r s) = k’ r ++ k s

k (br s r) = k s ++ k’ r

k (il r1 s r2) = k’ r1 ++ k s ++ k r2

k (ss r) = k’ r

k’ r = [’.’ | b <- r] -- a sequence of |r| dots

k’’ cs = concat (map k cs) -- concatenating (k c) for all c in cs

Theorem 2. Grammar Gc is a canonical yield grammar for canonical
RNA secondary structures.

Proof. We have to show that (a) the grammar Gc is unambiguous, and (b)
the mapping k is bijective. (a) is shown by induction on the derivations
of the grammar. For (b), injectivity of k is shown by structural recursion,
while surjectivity uses a string grammar k(Gc) (in analogy to y(G) in
Sect. 3) to show that L(W) ⊂ L(k(Gc)). Details are omitted.



3.4 Efficiency

A canonical grammar, whether encoded in ADP or in conventional matrix
recurrences, may require some extra tables compared to its non-canonical
counterpart, in order to keep more structures distinct. In our RNA exam-
ple, the non-canonical grammar zuker81 uses 2 tables, while the canonical
grammar canonicals uses 4. This is the price for the added versatility.

3.5 Algebras for Various Analyses

Due to Theorem 2 we know that the DP algorithm Gc considers each
canonical RNA structure exactly once. Hence it can serve as a “master
copy” of all DP algorithms which can be formulated as a FS-algebra.

Simple evaluation algebras. The analyses in Table 1 can be defined each
in a few lines: Energy minimization for canonical structures has been de-

Purpose Value Domain Interpretation Objective
of Operators Function

Energy minimization energy values energy rules for minimi-
hairpin loops, bulges, zation
stacked pairs, etc.

Structure enumeration trees in data tree constructors identity
type T HL, IL, SR, etc. function

Structure counting Integers multiply counts summation
of substructures

Structure count Reals multiply counts summation
estimation by pairing prob.

Table 1. Different analyses based on Gc

signed and implemented in [10] and [26]. Structure enumeration has been
used to generate visualizations of the folding space via RNA-Movies [13].
Structure counts are correct due to canonicity of the grammar, and can-
onization of structures proves a dramatic reduction of the folding space.
The probabilistic estimates for feasible and canonical structures were ob-
tained by the method explained in detail in Section 4. These estimates
seem remarkably good: In all our test cases, the number of structures
counted was within a factor of 2 of the estimate. The Waterman formula
[31] for the number of possible structures for all sequences of length n can
also be written as a simple yield grammar, and is included for comparison.

Table 2, showing concrete structure statistics for initial segments of
an RNA sequence3 from neurospora crassi. n denotes sequence length,
and the columns list structures counted, estimated, or evaluated by the
various algorithms. These figures also indicate that the majority of struc-
tures accounted for by Waterman’s formula do not exist in the folding
space of a given sequence, the majority of structures considered by the
3 "gaccauacccacuggaaaacucgggaucccguccgcucuccca...".



n Waterman Zuker Probabilistic Feasible Canonical Probabilistic
formula algorithm estimate structs. structs. estimate

feasibles canonicals

5 8 0 1.16 1 1 1.00
10 423 12 5.98 9 1 1.34
15 30372 544 100.82 106 7 5.82
20 2516347 38160 510.60 390 7 9.02
25 226460893 2428352 15160.50 16343 72 71.37
30 21511212261 229202163 175550.00 235025 244 233.80

Table 2. Some structure statistics collected via the algebras listed in Table 1

Zuker algorithm is redundant, and the majority of the feasible structures
enumerated by the non-redundant Wuchty algorithm is non-canonical.

4 Pattern Matching for Regulatory Elements in RNA

Retaining the evaluation algebras and the canonical model, but specializ-
ing the grammar we obtain DP algorithms to analyse all classes of struc-
tural motifs that can be described by a regular tree grammar. In differ-
ence to folding of the complete RNA sequence as described in Section
3.3 we look now for local similarities to a structural motif. By using one
statistical and one combinatorial algebra we are able to use the same pro-
gram to evaluate statistical significance and to perform actual structural
pattern searching. This allows to calibrate the specifity of pattern descrip-
tions. Stuctural signals are important in post-transcriptional processing
of RNA. We focus on two motifs and formulate canonical grammars for
them: The Iron Responsive Elements (IREs) and the Selenocysteine In-
sertion Sequence (SECIS ).

4.1 Extensions for pattern matching

In order to decribe and evaluate structural patterns we have to extend the
ADP notations explained in Sections 2.3 and 2.4 as well as the pattern
constructs and the evaluation algebras (see Section 2.2).

Pattern constructs. Table 3 shows a summary of the additional required
pattern constructs. For our example motifs these constructs are sufficient.
If there are other pattern constructs necessary for the description of fur-
ther motifs, it is easy to formulate them in the same manner.

Evaluation algebras. A report on the particular pattern instances found,
indicating their location in the sequence, their concrete constituents etc.
is obtained via the enumeration algebra (see Section 3.5). We formulate a
counting algebra to calculate the number of occurences of the structural
RNA motif and an expectation algebra to compute the expected number of
appearances of the search pattern. In the counting algebra the answer data
type is fixed to Int and the evaluation functions are defined to multiply



pattern construct meaning

unp lb t rb (unpaired) The bases lb and rb cannot form a feasible base pair.

nwc lb t rb (non watson crick) The bases lb and rb form a non-Watson-
Crick base pair.

hl lb us rb (hairpin) The bases lb and rb form a feasible base pair and the
hairpin consists of a sequence motif.

rp lb t rb required pair of specific bases lb and rb

skip left t skips one base at the 5′ side

skip right t skips one base at the 3′ side

loop us t Internal loop: The left singlestranded region is a sequence motif.
The right singlestranded region is arbitrary.

lr us (left region) Pattern consisting of an arbitrary region at the 5′

end and a specific sequence motif at the 3′ end (us).

rr us (right region) Pattern consisting of a specific sequence motif at
the 5′ end (us) and of an arbitrary region at the 3′ end.

Table 3. The additional pattern constructs for pattern matching. t always stands for
the included substructure, and us means a specific sequence motif given by a IUPAC
string.

counts of structure constituents, whereas in the expectation algebra the
answer data type is Float and the evaluation functions are defined to
multiply the probabilities of the structure constituents.

The objective function h is defined to sum over the elements in a list,
returning a unitary list rather than an integer to conform to the overall
scheme.
h [] = []

h xs = [sum xs]

In the counting alegbra the list elements are structure counts and in the
expectation algebra expectation values.

Common evaluation functions. The evaluation functions str, ss, lr, rr,
skip left and skip right are defined identically in both algebras.

str t = t ss _ = 1

lr _ us = us rr us _ = us

skip_left _ t = t skip_right t _ = t

Specific evaluation functions. The functions loop, sr, unp, hl, nwc and
rp are specific for the different evaluation algebras. The definition of the
predicates basepairing, non watcr pairing and nopairing also depend
on the evaluation strategy4.

Counting alegbra.
loop us t _ = t sr lb t rb = t

unp lb t rb = t hl lb us rb = 1

4 The predicate iupacmatch, which also depends on the evaluation algebra, is explained
in the next paragraph.



rp lb t rb = t nwc lb t rb = t

basepairing (i,j) = (i < j) && pair (x!(i+1), (x!j))

non_watcr_pairing (i,j) = (i < j) && not (watcr_pair (x!(i+1), (x!j)))

nopairing (i,j) = (i < j) && not (pair (x!(i+1), (x!j)))

x is a global variable referring to an array which contains the input se-
quence indexed by position. The basepairing (i,j) predicate checks if
the bases at the positions i + 1 and j can form a feasible basepair5, the
non watcr pairing predicate checks if the bases at the positions i+1 and
j can form any non-Watson-Crick base pair and the nopairing predicate
checks if the bases at the positions i + 1 and j cannot form a feasible
basepair.

Expectation algebra. In order to define the evaluation functions the base
composition of the examined RNA sequence, the base pairing probabil-
ity6 and the Watson-Crick base pairing probability7 are used. For every
character of the IUPAC code its probability is computed from the base
composition and stored in the array ubasecomp.

loop us t _ = t * product[ubasecomp!u | u <- us]

sr lb t rb = t * pair_prob

unp lb t rb = t * (1 - pair_prob)

nwc lb t rb = t * (1 - watcr_pair_prob)

hl lb us rb = pair_prob * product [ubasecomp!u | u <- us]

rp lb t rb = t * ubasecomp!lb * ubasecomp!rb

nopairing (i,j) = True

basepairing (i,j) = True

non_watcr_pairing (i,j) = True

The predicates basepairing, non watcr pairing and nopairing are
defined to deliver always True, because the evaluation takes place inside
the algebra functions. The expectation algebra does (in contrast to the
counting algebra) not look inside the examined sequence. To evaluate, for
example, the probability that the bases at positions i + 1 and j pair, the
algebra uses the pair probability value to obtain the result. The same
strategy is used to calculate the probability of two bases not to form a
feasible base pair or to form a non-Watson-Crick base pair.

Handling of specific sequence motifs. We introduce the iupac parser to
evaluate fixed sequence patterns.
iupac us iupacmatch (i,j) = [us | iupacmatch us [x!k | k <- [i+1 .. j]]]

Iupacmatch is an auxiliary boolean function in the evaluation algebras. If
iupacmatch is succesful, the iupac parser returns the IUPAC string us.
5 Feasible base pairs are the Watson Crick pairs C-G and A-U as well as the Wobble

base pair G-U.
6 This value includes all feasible base pairing possibilities.
7 This value only includes the Watson Crick pairs A-U and G-C.



In the case of the counting algebra iupacmatch checks, if us matches
the sequence part si+1..sj . In the case of the expectation algebra the
iupacmatch function returns True, if us has the same length as the con-
sidered input interval si+1..sj . The corresponding functions of the expec-
tation algebra calculate the probability of the string us according to the
base composition of the input sequence8.

The iupac clause is used to define the fbase parser, which looks for
a specified IUPAC character, and to define the base parser to search for
an arbitrary nucleotide:

fbase x = iupac x

base = fbase "N"

Iterative constructs. To conveniently describe helical regions whose sizes
are controlled by parameters, we define a stackscheme, the rep construct
and the upto construct. The stackscheme checks for one base pair of
a helical region. The rep construct, which parses a given scheme q a
specified number of times and then continues with r, is used to look for
stacking regions of specified length. The upto construct, which parses a
given scheme upto a specified number of times before continuing with r,
enables us to describe helical regions of flexible size.

stackscheme r = (sr <<< base -~~ r ~~- base) ‘with‘ basepairing

rep 0 q r = r

rep (n+1) q r = q (rep n q r)

upto 0 q r = r

upto (n+1) q r = r ||| q (upto n q r)

Combinators. We define two new combinators to restrict the input in-
tervals of the lefthand parser r respectively of the righthand parser q
according to a given lower bound u and an upper bound o. In the case of
the ˜!˜combinator the lefthand parser r works only on the intervals start-
ing from i with the minimal length u upto the maximum length o and
the righthand parser q evaluates the rest of the input interval i..j. The
˜!!˜combinator gives the possibility to define an interval for the righthand
parser q.

(~!~) u o r q (i,j)

= [x y | k <- [min (i+u) j .. min (i+o) j] , x <- r (i,k) , y <- q (k,j)]

(~!!~) u o r q (i,j)

= [x y | k <- [max (j-o) i .. max (j-u) i] , x <- r (i,k) , y <- q (k,j)]

4.2 The Iron Responsive Element

Iron Responsive Elements (IREs) are regulatory signals found for example
in the 5’UTR of ferritin-mRNAs [?]. Depending on the amount of iron in
the cell they effect the translation efficiency of the ferritin-mRNA.
8 Note again, since the IUPAC string comes from the pattern, the expectation algebra

need not access the input characters.



An IRE is a stem-loop structure consisting of a “CAGUGH” 9 hairpin,
a stack of four to six base pairs, an internal loop and another stack of
at least two base pairs. The nucleotide next to the four to six base pair
stack in the left region of the interior loop must be a Cytosin.

One (out of many) secondary structure for sequence i = "AACCAGGCAA
GUGCAGUGCCGCUUUUGGG" is an IRE element. The formula s below is an
algebraic representation of this secondary structure.
s = STR [SS (0,3),(SR ’C’(SR ’A’ (IL (5,8) (SR ’A’ (SR ’A’ (SR
’G’ (SR ’U’ (HL ’G’ "CAGUGC" ’C’) ’C’) ’G’) ’U’) ’U’) (24,25))
’U’) ’G’), SS (27,29)]

Fig. 1 shows the term representation of the formula s and the IRE
structure. The structure is divided into different parts. For each variable
part of the IRE a short description with an abbreviation is given.

STR

SSSS

IL

SR

SR

SR

SR

SR

SR

HL

lmin

the maximal length of the right region:

smax

ire_hairpin:

ire_stack:

ire_loop:

the minimal number of stacked base pairs:

the maximal number of stacked base pairs:

the minimal length of the left region:
the maximal length of the left region:
the minmal length of the right region:

lmax

rmax
rmin

smin

the concrete loop sequence: hlseq

ire_strong

ire_weak

 

a

a

a

a

a

c

c

c

c

c

g

g

g

g

g

g

g

g

g

g

u

u

u

u

u

u

c

a

’u’

’u’

[  ]

"gg""aac"

’g’’c’

’a’

"ggc"

’a’ ’u’

’a’ ’u’

’g’ ’c’

’u’ ’g’

’g’’g’

"cagugc"

c

Fig. 1. The Iron Responsive Element

4.3 A Canonical Grammar for IRE patterns

We now specialize the grammar for canonical structures to get a rec-
ognizer of IREs in UTRs. Because IREs vary between eukaryotes and
prokaryotes [7], we allow a variable description of the IRE search pattern
using the parameters indicated in the IRE graphic (see Fig.1).

9 We use the IUPAC -notation. The last nucleotide must not pair with the Cytosine
in the first position of the loop.



IRE alg lmin lmax rmin rmax smin smax hlseq inp = axiom (p lcomps) where

(str,ss,hl,sr,lr,skip_left,skip_right,loop,h) = alg

(~!+~) = lmin ~!~ lmax

(~!!+~) = rmin ~!!~ rmax

lcomps = tabulated (

str <<< (skip_left <<< base -~~ p lcomps ||| p rcomps ... h))

rcomps = tabulated (

skip_right <<< p rcomps ~~- base ||| p ire_strong ... h)

ire_strong = tabulated (

(sr <<< base -~~ ire_weak ~~- base) with‘ basepairing)

ire_weak = sr <<< base -~~ p ire_loop ~~- base)

‘with‘ basepairing

usinglestrand = ss <<< uregion

ire_loop = tabulated ((loop <<< (lr <<< usinglestrand ~~-

(fbase "C")) ~!+~ p ire_stack ~!!+~ usinglestrand) ... h)

stackscheme r = (sr <<< base -~~ r ~~- base) ‘with‘ basepairing

ire_stack = tabulated ((upto (smax-smin) stackscheme

(rep (smin-1) stackscheme ire_hairpin)) ... h)

ire_hairpin = (hl <<< base -~~ (iupac hlseq) ~~- base)

‘with‘ basepairing

The parsers lcomps and rcomps process singlestranded regions adja-
cent to the IRE. The parsers ire strong, ire weak, ire loop, ire stack
and ire hairpin recognize IRE components as indicated in the IRE
graphic (see Fig.1). The ~!+~ and the ~!!+~ combinators bind the loop
size parameters to the combinators ~!~ and ~!!~ as explained in section
4.1 to allow only loops with the desired sizes. Using the fbase clause we
insure that the left region of the internal loop ends with a Cytosin. The
rep and the upto constructs enables us to describe an ire stack consist-
ing of at least smin and at most smax base pairs. It should be mentioned
that the last base pair of the stack is found by the ire hairpin parser,
which checks for the desired hairpin sequence hlseq by using the iupac
clause.

The recognition of IREs requires O(n2) space and O(n2 + m) time,
where n is the length of the input and m the number of matches requested.

To ensure canonicity of the IRE grammar, two productions (lcomps
and rcomps) must be used to ensure that bases at the 5′ and 3′ end
cannot be skipped in different, but equivalent orders. For the rest of the
grammar, canonicity follows from Theorem 2 (see Section 3.3). Hence, the
pattern matcher defined by this grammar can compute matches, match
counts as well as expected match numbers.

4.4 The Selenocysteine Insertion Sequence

The SECIS element [4] [22] is found in 3’ UTR of mRNAs which encode
for proteins containing the aminoacid selenocysteine. Selenocysteine is
encoded by UGA, which normally functions as a stop codon. The regula-
tory structure is necessary for incorporation of selenocysteine at an UGA
codon.



The SECIS element is a stem-loop structure consisting of a hairpin of
10 to 24 nucletides, a helix of 13 base pairs, an internal loop and another
stack of at least four base pairs [30]. There can occur mismatched bases
and bulges inside the long helical region. The hairpin loop contains a “AA”
sequence motif within the first seven nucleotides from the 5′ end. The four
base pairs at the 5′ end of the long helix are a special component called
Quartet. It consists of four non-Watson-Crick base pairs. Some of those
nucleotides are fixed. The 5′ part of the internal loop is three to seven
nucleotides long and the nucleotide next to the Quartet is an Adenosin.
The 3′ part of the internal loop is four to nine nucleotides long. Fig. 2
shows the details of the structure.

secis_stack1

size: 4 base pairs

  sequence of the first 7 nucleotides) 

size: 10-24bases
parameter: loop_seq  (the concrete

secis_hairpin
size: 9 base pairs

        allowed deletions)

        allowed insertions)
  -  ins_stack2 (the number of
       
  - del_stack2  (the number of
       allowed mismatches)
  - mis_stack2 (the number of    
parameters:  

secis_stack2

  Cick base pairs)
  (all non -Watson-
size: 4 base pairs

secis_Quartet

size-right: 4-9 bases
size left: 3-7 bases 

secis_loop

right

left

GA

AGU

A

Fig. 2. The Selenocysteine Insertion Sequence. Only the fixed nucleotides are labeled.
All the others are undetermined but must allow the claimed base pairs. The feasible
base pairs are symbolized by a regular black line, the non-Watson-Crick base pairs in
the Quartet are symbolized by a wide black line. The structure is divided into different
parts. For each part a short description is given. For variable parts the parameters are
listed with an abbreviation.

4.5 A Canonical Grammar for SECIS patterns

As in section 4.3 we specialize the grammar for canonical structures to
get a recognizer of the SECIS element. In order to formulate a grammar
for the SECIS element we have to modify the rep construct such that
mismatches and bulges are allowed inside helical regions10. Bulges are
modelled by insertions and deletions. It is possible to specify the num-
ber of mismatches, insertions and deletions for the long helical region
(secis stack2). Further we allow to specify the first seven nucleotides of
the hairpin loop (loop seq).

SECIS alg mis_stack2 del_stack2 ins_stack2 loop_seq inp = axiom (p lcomps)

10 The formal definition is not shown.



where

(str,ss,hl,sr,st,unp,nwc,lr,rr,skip_left,skip_right,loop,h) = alg

(~!+~) = 3 ~!~ 7

(~!!+~) = 4 ~!!~ 9

(~!++~) = 7 ~!~ 7

lcomps = tabulated (

str <<< ((skip_left <<< base -~~ p lcomps ||| p rcomps) ... h))

rcomps = tabulated (

(skip_right <<< p rcomps ~~- base ||| secis_stack1) ... h)

stackscheme r = (sr <<< base -~~ r ~~- base) ‘with‘ basepairing

mismatch r = (unp <<< base -~~ r ~~- base) ‘with‘ nopairing

deletion r = skip_left <<< base -~~ r

insertion r = skip_right <<< r ~~- base

secis_stack1 = tabulated (

(rep 4 stackscheme 0 mismatch 0 deletion 0 insertion (p secis_loop)))

usinglestrand = ss <<< uregion

secis_loop = tabulated (

(loop <<< (lr <<< usinglestrand ~~- (fbase "A")) ~!+~

(secis_quartet) ~!!+~ usinglestrand) ... h)

secis_quartet =

(rp <<< fbase "U" -~~ secis_quartet2 ~~- fbase "U" |||

rp <<< fbase "U" -~~ secis_quartet2 ~~- fbase "C") |||

rp <<< fbase "U" -~~ secis_quartet2 ~~- fbase "G") ... h

secis_quartet2 = rp <<< fbase "G" -~~ secis_quartet3 ~~- fbase "A"

secis_quartet3 = rp <<< fbase "A" -~~ secis_quartet4 ~~- fbase "G"

secis_quartet4 = (nwc <<< base -~~ secis_stack2 ~~- base)

‘with‘ non_watcr_pairing

secis_stack2 = tabulated (

(rep 7 stackscheme mis_stack2 mismatch del_stack2 deletion

ins_stack2 insertion secis_stack2end) ... h)

secis_stack2end = (sr <<< base -~~ secis_hairpin ~~- base)

‘with‘ basepairing

secis_hairpin =

((hl <<< base -~~ (hairpin ‘with‘ minloopsize 10 ‘with‘ maxloopsize 24)

~~- base) ‘with‘ basepairing) ... h

where

hairpin = rr <<< (iupac loop_seq) ~!++~ usinglestrand

The grammar for the SECIS element is similar to the IRE grammar.
The parsers secis stack1, secis loop, secis quartet, secis stack2
and secis hairpin recognize SECIS components as indicated in the SE-
CIS graphic (see Fig.2) and the parsers lcomps and rcomps process sin-
glestranded regions on the lefthand and the righthand side of the SECIS
element. Beside the stackscheme we define three other schemes to look for
mismatches, deletions and insertions. These schemes are used to construct
the long helical region with a specified number of mismatches, bulges and
deletions. In order to avoid isolated base pairs the last two pairs are de-
scribed separately, one inside the secis hairpin parser and the other
one in the secis stack2end parser. Otherwise the helical region could
end with an insertion, with a deletion or with a mismatch followed by
just one base pair. The four non-Watson-Crick base pairs of the Quartet
component are described with a separate parser for each pair, where the



fbase construct allows to check for the required bases. The ~!+~, the
~!++~ and the ~!!+~ combinators allow only loops with the sizes men-
tioned in the pattern description by using the combinators explained in
section 4.1.

The recognition of SECIS elements requires O(n2) space and O(n2 +
m) time, where n is the length of the input and m the number of matches
requested. Canonicity is ensured by the same reasoning as applied to the
IRE grammar.

4.6 Results

Significance calibration. The number of occurences of the search pattern
in a sequence, which is computed by using the counting algebra, is only
meaningful if it lies significantly above the estimated number of hits,
which is calculated by using the expectation algebra. By choice of the
parameters, the specificity of the pattern search can be calibrated. For
example decreasing of the allowed loop sizes or increasing of the desired
number of stacked base pairs result in a higher specifity of the search
pattern. Increasing of the number of allowed mismatches and bulges in
stacked regions for example leads to a lower specifity. Running the rec-
ognizer m with the expectation algebra on an arbitrary input of length n
and base composition c, it computes the expectation value Em(n, c).

Searching IREs. In order to test our IRE pattern matcher we use two
different random sequences of length 1000 (drawn from an identically dis-
tributed basecomposition) and two human sequences that contain IREs:

– the 5’ UTR of the human mRNA for the ferritin heavy chain (con-
taining one IRE element, GenBank accesion number: D28463, length:
208 nucleotides)

– the 3’ UTR of the human mRNA for the transferrin receptor (contain-
ing four IRE elements, GenBank accession number: X01060, length:
2464 nucleotides)

For our queries we vary the parameters for the ire haiprin sequence
(hlseq) and the parameters for the allowed length of the ire stack (smin
and smax). But we fix the parameters for the ire loop so that the left-
hand singlestranded region (see Figure 1) is one nucleotide long (lmin
= 1, lmax = 1) and the righthand singlestranded region is empty (rmin
= 0, lmax = 0). Table 4 summarizes the results.

Interpretation of the results for random sequences. When we use a very
unspecific motif description, we get some hits in the random sequences. By
looking at the corresponding E-values it becomes obvious, that those hits
are not meaningful, because the expected value is close to the observed
number of hits. With a more specific motif description, we do not observe
any hits in the random sequences.



random seq1 random seq2 ferritin transferrin
n = 1000 n = 1000 n = 208 n = 2464

hl seq stack sizes E-value count E-value count E-value count E-value count

nnnnnn 3 - 8 bp 2.874 3 2.877 2 0.558 1 7.054 11

nnnnnn 4 - 6 bp 1.01726 1 1.02096 0 0.17563 1 2.62773 9

cagugh 3 - 8 bp 0.00208 0 0.00209 0 0.00019 1 0.00390 4

cagugh 4 - 6 bp 0.00074 0 0.00074 0 0.00006 1 0.00145 4

Table 4. The results for the two random sequences and for the two human UTR
sequences.

Interpretation of the results for the human UTR sequences. With a very
unspecific motif description we observe random hits in addition to the true
positives. Again the number of random hits alone is closely related to the
expectation values. By increasing the specifity of the motif description we
find meaningful hits only.

Searching SECIS-elements We use the same two different random se-
quences of length 1000 as for testing the IRE pattern matcher. Further
we use a drosophila melanogaster and a mouse sequence that both contain
SECIS -elements:

– Drosophila melanogaster mRNA for selenophosphate synthetase 2 (Gen-
Bank accession number: AJ278068, length: 1341 nucleotides)

– Mus musculus (house mouse) mRNA for selenoprotein P (GenBank
accession number: X99807, length: 2075 nucleotides)

Deliberately, we use a rather unspecific version of the SECIS pattern:
We do not look for specific hairpin loop sequences in our queries11. We
vary the number of allowed mismatches (mis stack2), deletions (del stack2)
and insertions (ins stack2). Table 5 summarizes the results.

random seq1 random seq2 Drosophila Mus musculus
n = 1000 n = 1000 n = 1341 n = 2075

mis del ins E-value count E-value count E-value count E-value count

0 0 0 0.00015 0 0.00017 0 0.00033 0 0.00025 4

1 1 1 0.01771 0 0.02019 0 0.03959 0 0.03195 10

2 2 2 0.22700 0 0.25720 0 0.50305 1 0.42538 14

Table 5. Results for the SECIS element.

Interpretation of the results for the SECIS pattern. The columns of ran-
dom seq1 and random seq2 show the effect of relaxing the stack strin-
gency. Allowing six mismatches and gaps makes the pattern practically
11 That means the hairpin loop sequence is always arbitrary ("nnnnnnn").



useless for searching large data sets. Note that the drosophila SECIS ele-
ment is only found at this level of (un)specificity. This indicates that the
hairpin loop information is truely necessary; furthermore, it suggests that
it may be necessary to construct organism specific SECIS patterns.

5 Conclusion

The application range of the approach presented here is limited only by
the expressive power of tree grammars, or in more conventional terms,
the power of DP over sequences. Using our ADP-based approach a new
pattern matching algorithm can be designed and tested within a few
hours. Its efficiency is high enough for systematic testing of hypotheses.
For screening large data sets, a more efficient version in C can be derived
systematically by the method explained in [15].

However, the problem is not yet solved to satisfaction in the case
of self-overlapping patterns. Consider the hairpin-loop in SECIS, de-
scribed there by "nnnnnnn". Assume we did allow "aa" anywhere in the
loop sequence. Then, we would observe two distinct hits in "ccaaacc".
Mathematically, this is correct, since the pattern matches in two differ-
ent ways. But from the practical point of view, such overlapping hits of
the same pattern should be counted as a single hit. While this is not a
problem for implementing the counting algebra, the proper statistics of
self-overlapping patterns present an open problem and is the subject of
current research.

6 Acknowledgement

We thank Thomas Töller for providing informations about the IRE and
the SECIS patterns as well as the sequences for testing our programms.

References

1. S.F. Altschul, W. Gish, W. Miller, E.W. Myers, and D.J. Lipman. Basic local
alignment search tool. J. Mol. Biol., 215(3):403–10, 1990.

2. A. Apostolico, M. E. Bock, S. Lonardi, and X. Xu. Efficient detection of unusual
words. Journal of Computational Biology, 7(1/2):71–94, 2000.

3. R. Bellman. Dynamic Programming. Princeton University Press, 1957.
4. M.J. Berry, L Banu, Y. Chen, S.J. Mandel, J.D. Kieffer, J.W. Harney, and P.R.

Larsen. Recognition of UGA as a selenocystein codon in type I deiodinase requires
sequences in the 3’ untranslated region. Nature, 353:273–276, 1991.

5. W. S. Brainerd. Tree generating regular systems. Information and Control, 14:217–
231, 1969.

6. T.H. Cormen, C.E. Leiserson, and R.L. Rivest. Introduction to Algorithms. MIT
Press, Cambridge, MA, 1990.

7. T. Dandekar, K. Beyer, P. Bork, M-R. Kenealy, K. Pantopoulos, M. Hentze,
V. Sonntag-Buck, G. Flouriot, F. Gannon, W. Keller, and S. Schreiber. Systematic
genomic screening and analysis of mRNA in untranslated regions and mRNA pre-
cursors: combining experimental and computational approaches. Bioinformatics,
14(3):271–278, 1998.



8. T. Dandekar and M.W. Hentze. Finding the Hairpin in the Haystack: Searching
for RNA Motifs. Trends Genet., 11(2):45–50, 1995.

9. R. Durbin, S. Eddy, A. Krogh, and G. Mitchison. Biological Sequence Analysis.
Cambridge University Press, 1998.

10. D. Evers. RNA Folding via Algebraic Dynamic Programming. Bielefeld University,
2001. Forthcoming Dissertation.

11. D. Evers and R. Giegerich. Systematic dynamic programming in bioinformatics.
In Intelligent Systems for Molecular Biology (Tutorial Notes). AAAI Press, Menlo
Park, CA, USA, 2000.

12. D. Evers and R. Giegerich. Reducing the conformation space in RNA structure
prediction. Submitted., 2001.

13. Dirk Evers and Robert Giegerich. RNA Movies: Visualizing RNA Secondary Struc-
ture Spaces. Bioinformatics, 15(1):32–37, 1999.

14. R. Giegerich. Code Selection by Inversion of Order-Sorted Derivors. Theor. Com-
put. Sci., 73:177–211, 1990.

15. R. Giegerich. A Systematic Approach to Dynamic Programming in Bioinformatics.
Bioinformatics, 16:665–677, 2000.

16. R. Giegerich. Explaining and controlling ambiguity in dynamic programming. In
Proc. Combinatorial Pattern Matching, pages 46–59. Springer Verlag, 2000.

17. D. Gusfield. Algorithms on Strings, Trees, and Sequences. Cambridge University
Press, 1997.

18. D. Gusfield, K. Balasubramanian, and D. Naor. Parametric Optimization of Se-
quence Alignment. Algorithmica, 12:312–326, 1994.

19. M.W. Hentze and L.C. Kühn. Molecular control of vertebrate iron metabolism:
mRNA-based regulatory circuits operated by iron, nitric oxide, and oxidative
stress. Proc. Natl. Sci. USA, 93:8175–8182, 1996.

20. I. L. Hofacker, P. Schuster, and P. F. Stadler. Combinatorics of RNA secondary
structures. Discr. Appl. Math, 89:177–207, 1999.

21. G. Hutton. Higher Order Functions for Parsing. Journal of Functional Program-
ming, 3(2):323–343, 1992.

22. G. Kryukov, M. Kryukov, and V. Gladyshev. New Mammalian Selenocysteine-
containing Proteins Identified with an Algorithm That Searches for Selenocysteine
Insertion Sequence Elements. Cabios, 274(48):33888–33897, 1999.

23. S. Kurtz and G. W. Myers. Estimating the Probability of Approximate Matches.
In Proceedings Combinatorial Pattern Matching, pages 52–64, 1997.

24. S. Kurtz, E. Ohlebusch, C. Schleiermacher, J. Stoye, and R. Giegerich. Compu-
tation and visualization of degenerate repeats in complete genomes. In Proc. In-
telligent Systems for Molecular Biology, pages 228–238. AAAI Press, Menlo Park,
CA, USA, 2000.

25. H.T. Mevissen and M. Vingron. Quantifying the Local Reliability of a Sequence
Alignment. Prot. Eng., 9(2), 1996.

26. C. Meyer. Lazy Evaluation of Recurrences in Dynamic Programming, 1999.
Diploma Thesis, Bielefeld University (in German).

27. D. Naor and D. Brutlag. On Near-Optimal Alignments in Biological Sequences.
J. Comp. Biol., 1:349–366, 1994.

28. R. Nussinov, G. Pieczenik, J.R. Griggs, and D.J. Kleitman. Algorithms for loop
matchings. SIAM J. Appl. Math., 35:68–82, 1978.

29. R. Staden. Methods for calculating the probabilities of finding patterns in se-
quences. Cabios, 5(2):89–96, 1989.

30. R. Walczak, E. Westhof, P. Carbon, and A. Krol. A novel RNA structural motif
in the selenocysteine insertion element of eukaryotic selenoprotein mRNAs. RNA,
2:367–379, 1996.

31. M. S. Waterman and T. F. Smith. RNA secondary structure: A complete mathe-
matical analysis. Math. Biosci., 41:257–266, 1978.



32. M.S. Waterman and T.H. Byers. A dynamic programming algorithm to find all
solutions in a neighborhood of the optimum. Mathematical Biosciences, 77:179–
188, 1985.

33. S. Wuchty, I. Fontana, W.and Hofacker, and P. Schuster. Complete suboptimal
folding of RNA and the stability of secondary structures. Biopolymers, 49:145–165,
1998.

34. M. Zuker. On Finding all Suboptimal Foldings of an RNA Molecule. Science,
244:48–52, 1989.

35. M. Zuker and S. Sankoff. RNA secondary structures and their prediction. Bull.
Math. Biol., 46:591–621, 1984.

36. M. Zuker and P. Stiegler. Optimal computer folding of large RNA sequences
using thermodynamics and auxiliary information. Nucleic Acids Res., 9(1):133–
148, 1981.


