
Implementing Algebraic Dynamic Programming

in the Functional and the Imperative
Programming Paradigm

Robert Giegerich, Peter Steffen

Faculty of Technology, Bielefeld University
33501 Bielefeld, Germany

{robert,psteffen}@techfak.uni-bielefeld.de

Abstract. Algebraic dynamic programming is a new method for de-
veloping and reasoning about dynamic programming algorithms. In this
approach, so-called yield grammars and evaluation algebras constitute
abstract specifications of dynamic programming algorithms. We describe
how this theory is put to practice by providing a specification language
that can both be embedded in a lazy functional language, and trans-
lated into an imperative language. Parts of the analysis required for the
latter translation also gives rise to source-to-source transformations that
improve the asymptotic efficiency of the functional implementation. The
multi-paradigm system resulting from this approach provides increased
programming productivity and effective validation.

1 Motivation

1.1 Towards a discipline of dynamic programming

Dynamic Programming (DP)[2] is a well-established and widely used program-
ming technique. In recent years, the advances of molecular biology have created
thriving interest in dynamic programming algorithms over strings, since genomic
data pose sequence analysis problems in unprecedenced complexity and data vol-
ume [4]. In this context, it became apparent that there is the lack of a formal
method for developing the intricate matrix recurrences that typically constitute
a DP algorithm.

1.2 A short review of ADP

Algebraic dynamic programming (ADP) is a technique designed to alleviate this
situation. Postponing technical definitions to later sections, the ADP approach
can be summarized as follows: Any DP algorithm evaluates a search space of can-
didate solutions under a scoring scheme and an objective function. The classical
DP recurrences reflect the three aspects of search space construction, scoring
and choice, and efficiency in an indiscriminable fashion. In the new algebraic ap-
proach, these concerns are separated. The search space is described by a so-called

yield grammar, evaluation and choice by an algebra, and efficiency concerns can
be persued on a very high level of abstraction. No subscripts, no (subscript)
errors.
Based on the abstract concepts of yield grammars and evaluation algebras, ADP
is essentially a piece of programming theory. The present paper is concerned with
putting this theory into practice.

1.3 Overview of this contribution

Section 2 reviews the central notion of the ADP approach and introduces a
domain-specific notation for describing ADP algorithms. The core of implemen-
ting ADP algorithms (in either programming paradigm) is the technique of ta-
bulating yield parsers, introduced in Section 3. An embedding of ADP notation
in Haskell is given in Section 4, which allows rapid prototyping, but has some
methodical and some practical limitations. Section 5 is dedicated to compilation
techniques, which allow to generate either optimized ADP/Haskell notation or
C code. Finally, Section 6 describes the overall style of algorithm development
that arises from this approach.

1.4 Related work

The wide use of DP in bioinformatics is documented in [4], but without me-
thodical guidance. The relation between parsing and dynamic programming is
discussed as an open problem in [17].
Yield parsing, as introduced here, takes a string as its input, and therefore,
although based on a tree grammar, it is more closely related to string than to
tree parsing methods. Its closest relatives are methods for parsing ambiguous
context free languages, such as Earley’s or the CYK algorithm [1].
The ADP approach has evolved in the recent years in the application context of
biosequence analysis. An informal description of the method is found in [6], the
first rigorous definition is given in [8], while some applications have appeared
earlier: The first application developed in the spirit of the yet-to-be-developed
ADP method is a program for aligning recombinant DNA [7]. ADP has further
been applied to solve the problem of folding saturated RNA secondary structures,
posed by Zuker and Sankoff in 1984 [5, 21]. An application to statistical scoring
in pattern matching is reported in [14]. The development of the ADP compiler
described here is new and based on ongoing research [19].

2 Tree grammars and yield languages

2.1 Basic terminology

Alphabets. An alphabet A is a finite set of symbols. Sequences of symbols are
called strings. ε denotes the empty string,A1 = A, An+1 = {aw|a ∈ A, w ∈ An},
A+ =

⋃
n≥1An, A∗ = A+ ∪ {ε}. By convention, a denotes a single symbol, w

and x a string over A∗.

Signatures and algebras. A (single-sorted) signature Σ over some alphabet A
consists of a sort symbol S together with a family of operators. Each operator
o has a fixed arity o : s1...sko → S, where each si is either S or A. A Σ-algebra
I over A, also called an interpretation, is a set SI of values together with a
function oI for each operator o. Each oI has type oI : (s1)I ...(sko)I → SI where
AI = A.
A term algebra TΣ arises by interpreting the operators in Σ as constructors,
building bigger terms from smaller ones. When variables from a set V can take
the place of arguments to constructors, we speak of a term algebra with variables,
TΣ(V), with V ⊂ TΣ(V).
Trees and tree patterns. Terms will be viewed as rooted, ordered, node-labeled
trees in the obvious way. Note that only leaf nodes can carry symbols from A. A
term/tree with variables is called a tree pattern. A tree containing a designated
occurrence of a subtree t is denoted C[...t...]. We adopt the view that the tree
constructors represent some structure that is associated explicitly with the se-
quence of leaf symbols from A∗. The nullary constructors that may reside at leaf
nodes are not considered part of the yield. Hence the yield function y on TΣ(V)
is defined by y(t) = w, where w ∈ (A∪ V)∗ is the sequence of leaf symbols from
A and V in left to right order.

2.2 Tree grammars

A tree language over Σ is a subset of TΣ. Tree languages are described by tree
grammars, which can be defined in analogy to the Chomsky hierarchy of string
grammars. Here we use regular tree grammars originally studied in [3], with the
algebraic flavour introduced in [9]. Our specialization so far lies solely with the
distinguished role of the alphabet A.

Definition 1 (Tree grammar.) A regular tree grammar G over Σ is given by

– a set V of nonterminal symbols,
– a designated nonterminal symbol Ax called the axiom,
– a set P of productions of the form v → t, where v ∈ V and t ∈ TΣ(V).

The derivation relation for tree grammars is →∗, with C[...v...] → C[...t...] if
v → t ∈ P . The language of v ∈ V is L(v) = {t ∈ TΣ |v →∗ t}, the language of G
is L(G) = L(Ax). For arbitrary q ∈ TΣ(V) we define L(q) = {t ∈ TΣ |q →∗ t}. 2

2.3 Lexical level and conditional productions

The following two extensions are motivated by the fact that yield grammars are
to be used as a programming device. We add a lexical level to our grammars.
As with context free grammars, this is not necessary from a theoretical point of
view, but makes examples less trivial and applications more concise. In the sequel
we shall admit strings over A∗ in place of single symbols. By convention, the
terminal symbol char will denote an arbitrary symbol from A, and the terminal
symbol string will denote a string from A∗.

A = {′a′, . . . ,′ z′}, V = {pal1, pal2, pal3, pal4},
Ax = choose one out of V,

Σ = {N : A∗ → S

R : A× S ×A → S

D : A× S → S

I : S ×A → S

L : A∗ × S ×A∗ → S},

P = {pal1 → N
|

string

| R
� | �

char pal1 char

with equal

pal2 → L
� | �

string pal1 string

pal3 → N
|

string

| R
� | �

char pal3 char

| D
� �

char pal3

| I
� �

pal3 char

pal4 → L
� | �

string pal3 string

}

Fig. 1. Tree Grammars Pal1 through Pal4, depending on the choice of the axiom.

Our tree grammars will further be augmented with conditional productions.
Their meaning is explained as a conditional form of derivation:

Definition 2 (Conditional productions.) A conditional production has the form
v

c→ t where c is a predicate defined on A∗. A derivation using a conditional
production, v

c→ t →∗ t′, where t′ ∈ TΣ, is well-formed only if c(y(t′)) holds.
The language of a tree grammar with conditions is the set of trees that can be
derived from the axiom by well-formed derivations. 2

Note that the use of a conditional production v
c→ t with c at some point in

a derivation affects the complete derivation that continues from the subtree t
inserted by this production. Only after the derivation is complete, the condition
can be checked. A typical example is a condition that imposes a minimal or
maximal length on y(t′).

(1)
L

� | �
p | l

R
� | �

a | a
R

� | �
n | n

R
� | �

a | a
N
|

mac

(2)
D

� |
p |

I
| �| l
R

� | �
a | a

R
� | �

n | n
I
| �| a
I
| �| c
R

� | �
a | a

N
|
m

(1) L ”p” (R ’a’ (R ’n’ (R ’a’ (N ”mac”) ’a’) ’n’) ’a’) ”l”
(2) D ’p’ (I (R ’a’ (R ’n’ (I (I (R ’a’ (N ”m”) ’a’) ’c’) ’a’) ’n’) ’a’) ’l’)

Fig. 2. A local separated palindrome derived from pal2 (1) and a global approximate
palindrome derived from pal3 (2).

2.4 Examples: Palindromes and separated palindromes

Figure 1 shows four simple tree grammars for palindromic languages, depend-
ing on the choice of the axiom. They describe separated palindromes (pal1)
of the form uvu−1, and approximate separated palindromes (pal3) under the
standard edit distance model of single character (R)eplacements, (D)eletions
and (I)nsertions [11]. Operator N marks the middle part v of uvu−1. Choos-
ing axioms pal2 or pal4, we obtain local palindromes, embedded in an arbi-
trary context string. Note that this example makes use of a syntactic predicate
equal(a1...an) = a1 ≡ an and the lexical symbols char, string as described in
Section 2.3. Note that t ∈ L(Pali) explicitly describes the internal structure of
a palindrome, while the palindromic string by itself is y(t).
Figure 2 shows two examples for the input sequence panamacanal, each with
term representation and the corresponding tree.

2.5 Yield languages and the yield parsing problem

We can now define the particular parsing problem we shall have to solve:

Definition 3 (Yield grammars and yield languages.) The pair (G, y) is called a
yield grammar, and its yield language L(G, y) = y(L(G)). 2

Definition 4 (Yield parsing.) Given a yield grammar (G, y) over A and w ∈
A∗, the yield parsing problem is to construct PG(w) := {t ∈ L(G)|y(t) = w}. 2
Compared to string languages described by context free grammars – such as
programming languages – yield languages that arise in practise are often trivial
and could be defined by much simpler means. For example, L(Pali, y) is A∗ for
all four example grammars. Here, all our interest lies in determining the trees
PG(w), which represent various palindromic structures we associate with a given
yield string w.
Note that the trees PG(w) returned by a yield parser are not derivation trees
according to G, but terminal trees derivable by G with yield w.

2.6 Yield languages versus context free languages

For the record, we dwell a moment on aspects of formal language theory and
show that yield languages are context free languages, and vice versa. This allows
to carry over useful (un)decidability results (such as emptiness or ambiguity)
from context free languages to yield languages.

Definition 5 (Flat grammar.) The flat grammar associated with the yield gram-
mar (G, y), where G = (V, Ax, P) is the context free string grammar y(G) =
(V,A, Ax, {v → y(t)|v → t ∈ P}). 2
Note that several distinct productions of the tree grammar may map to the same
production in the flat grammar.
By construction, L(y(G)) = L((G, y)) – for each derivation in G there is one in
y(G) , and vice versa. So, yield languages are context free languages. The converse
is also true. Each string grammar G′ can be turned into a corresponding tree
grammar by naming its productions, and using these names with suitable arities
as operators of Σ. Each tree derived by this tree grammar is a syntax tree in G′,
labeled by explicit production names. We conclude:

Theorem 6 The class of yield languages is the class of context free languages.
2

2.7 Evaluation algebras

Definition 7 (Evaluation algebra.) Let Σ be a signature with sort symbol Ans.
A Σ-evaluation algebra is a Σ-algebra augmented with an objective function
h : [Ans]→ [Ans], where [Ans] denotes lists over Ans. 2

In most DP applications, the purpose of the objective function is minimizing
or maximizing over all answers. We take a slightly more general view here. The
objective may be to calculate a sample of answers, or all answers within a certain
threshold of optimality. It could even be a complete enumeration of answers. We
may compute the size of the search space or evaluate it in some statistical fashion,
say by averaging over all answers, and so on. This is why in general, the objective
function will return a list of answers. If maximization was the objective, this list
would hold the maximum as its only element.

2.8 Algebraic dynamic programming and Bellman’s principle

Given that yield parsing traverses the search space, all that is left to do is
evaluate candidates in some algebra and apply the objective function.

Definition 8 (Algebraic dynamic programming.)

– An ADP problem is specified by a signature Σ over A, a yield grammar
(G, y) over Σ, and a Σ-evaluation algebra I with objective function hI .

– An ADP problem instance is posed by a string w ∈ A∗. The search space it
spawns is the set of all its parses, PG(w).

– Solving an ADP problem is computing

hI{tI | t ∈ PG(w)}.
2

There is one essential ingredient missing: efficiency. Since the size of the search
space may be exponential in terms of input size, an ADP problem can be solved
in polynomial time and space only under the condition known as Bellman’s
principle of optimality. In his own words:

An optimal policy has the property that whatever the initial state and
initial decision are, the remaining decisions must constitute an optimal
policy with regard to the state resulting from the first decision. [2]

We can now formalize this principle:

Definition 9 (Algebraic version of Bellman’s principle.) For each k-ary op-
erator f in Σ, and all answer lists z1, . . . , zk, the objective function h satisfies

h([f(x1, . . . , xk) | x1 ← z1, . . . , xk ← zk])
= h([f(x1, . . . , xk) | x1 ← h(z1), . . . , xk ← h(zk)])

Additionally, the same property holds for the concatenation of answer lists:

h(z1 ++ z2) = h(h(z1) ++ h(z2))

2

The practical meaning of the optimality principle is that we may push the ap-
plication of the objective function inside the computation of subproblems, thus
preventing combinatorial explosion. We shall annotate the tree grammar to in-
dicate the cases where h is to be applied.
Compared to the classic description of DP algorithm via matrix recurrences, we
have achieved the following:
– An ADP specification is more abstract than the traditional recurrences. Sepa-

ration between search space construction and evaluation is perfect. Tree
grammars and evaluation algebras can be combined in a modular way, and
the relationships between problem variants can be explained clearly.

– The ADP specification is also more complete: DP algorithms in the literature
often claim to be parametric with respect to the scoring function, while the
initialisation equations are considered part of the search algorithm [4]. In
ADP, it becomes clear that initialisation semantically is the evaluation of
empty candidates, and is specified within the algebra.

– Our formalization of Bellman’s principle is more general than commonly
seen. Objectives like complete enumeration or statistical evaluation of the
search space now fall under the framework. If maximization is the objective,
our criterion implies Morin’s formalization (strict monotonicity) [15] as a
special case.

– The ADP specification is more reliable. The absence of subscripts excludes
a large class of errors that are traditionally hard to find.

2.9 The ADP programming language

Yield grammars in ASCII notation For lack of space, we can only show
the core of the ADP language. The declarative semantics of this language is
simply that it allows to describe signatures, evaluation algebras and yield gram-
mars. The signature Σ is written as an algebraic data type definition in Haskell.
Alike EBNF, the productions of the yield grammar are written as equations.
The operator <<< is used to denote the application of a tree constructor to its
arguments, which are chained via the ~~~-operator. Operator ||| separates mul-
tiple righthand sides of a nonterminal symbol. The axiom symbol is indicated by
the keyword axiom, and conditions are attached to productions via the keyword
with. Finally, the application of the objective function h is indicated via the
...-operator. Here is one of our example grammars in ADP language:
data Palindrome =

N (Int, Int) | R Char Palindrome Char |

D Char Palindrome | I Palindrome Char

grammar_Pal3 x = axiom pal3 where

pal3 = N <<< string |||

R <<< char ~~~ pal3 ~~~ char |||

D <<< char ~~~ pal3 |||

I <<< pal3 ~~~ char ... h

The operational semantics of Section 4 turns this little program into a yield
parser for Grammar Pal3.

From yield parsing to algebraic dynamic programming The tree parser
becomes a generic dynamic programming algorithm by replacing the signature
Σ (Palindrome in our example) by an arbitrary Σ-evaluation algebra, which
becomes a parameter to the grammar. Tabulation is controlled via the keywords
tabulated and p.1 -~~ and ~~- are variants of the ~~~-operator, which are
equivalent in their declarative semantics (cf. 4.3).

> import Array

> type Palindrome_Algebra answer =

> ((Int,Int) -> answer, -- evaluation function n

> Char -> answer -> Char -> answer, -- evaluation function r

> Char -> answer -> answer, -- evaluation function d

> answer -> Char -> answer, -- evaluation function i

> [answer] -> [answer]) -- objective function h

> grammar_Pal3 alg x = axiom (p pal3) where

> (n, r, d, i, h) = alg

> axiom ax = ax (0,m)

> (_, m) = bounds x

> tabulated = table m

> char (i,j) = [x!j | i+1 == j]

> pal3 = tabulated(

> n <<< string |||

> r <<< char -~~ p pal3 ~~- char |||

> d <<< char -~~ p pal3 |||

> i <<< p pal3 ~~- char ... h)

3 Tabulating yield parsers

3.1 The yield parsing “paradox“

Yield parsers, to be developed in this section, will serve as the computational en-
gine for implementing ADP algorithms. Our claim is that ADP applies generally
to dynamic programming over sequence data. Apparently, there is a contradic-
tion:
On the one hand, there exist DP algorithms of various polynomial complexities,
such as diverse O(n2) algorithms for sequence comparison [4], O(n3) algorithms
for RNA structure prediction [21], or the O(n6)-algorithm of Rivas and Eddy
[16] for folding RNA pseudoknots.
On the other hand, we have learned in Section 2.6 that yield languages are
context free languages. The trees to be delivered by a yield parser are built from
the operators of the underlying signature, but otherwise isomorphic to syntax
trees returned by a context free parser for the corresponding flat grammar. We

1 The initial binding clauses serve the Haskell embedding and are explained below.
All lines preceded by > jointly result in an executable Haskell program.

know that languages defined by ambiguous context free string grammars can be
parsed in O(n3) by the CYK algorithm [1] or even slightly faster [18, 20]. Two
questions come to mind:

1. Why should we introduce yield languages at all – could we not stick with
string grammars and their established parsing methods?

2. Wouldn’t this imply that we can solve all dynamic programming problems
in the scope of ADP in O(n3)? Or, formulated the other way, does this mean
that the scope of ADP is limited to dynamic programming problems within
the O(n3) complexity class?

Let us first note that Question 1 is correct in the sense that there is a simple and
general tree grammar transformation that makes the yield parser run in O(n3).
Each tree returned by the parser can be postprocessed in O(n) to correspond to
the original grammar. This makes Question 2 even more puzzling.
Well, ADP is a general method, not limited to O(n3) algorithms, so something
essential must have been overlooked in Question 1. It is the fact that the yield
parser’s obligation is not just to determine the parse trees. It must construct
them in a special way, in order to provide for amalgamation of recognition and
evaluation phase (cf. Section 2.8). Remember that the trees constructed are
formulas of TΣ , to be interpreted in the evaluation algebra I. The parser must
construct the trees such that, at any point, a (partial) tree t can be substituted
by the (partial) answer value tI . Only so, the choice function can be applied to
partial answers and prevent the combinatorial explosion of their number. This
prevents the use of grammar transformations that might speed up the parsing.

3.2 Adopting the CYK parsing algorithm

We shall adopt the so-called Cocke-Younger-Kasami (CYK) parsing technique
for ambiguous context free grammars [1] to yield parsing. Two problems arise:

– Two tree productions like v → N(w), v → M(w) both correspond to the
same string production v → w. In order not to loose results, the yield parser
must be based directly on G rather than a string grammar.

– CYK relies on a transformation of the string grammar into Chomsky normal
form. Such a transformation is not allowed in our case, as it would imply a
change of the signature underlying the tree grammar.

Neither the explicit transformation to Chomsky normal form, nor the implicit
transformation of the Graham-Harrison parser [10] can be used. We shall start
with a nondeterministic, top-down parser that is subsequently transformed into
a CYK-style parser implemented via dynamic programming.

3.3 Top-down nondeterministic yield parsers

For a given yield string w, the set PG(w) of all its parses can be defined recursively
using the productions of G. For v ∈ V and a ∈ A∗ we define the sets of parses

Pv(w) and Pa(w), respectively. Without loss of generality we assume that all
productions for a nonterminal v are defined via a single rule with alternative
righthand sides, in the form v → q1|...|qr. Possibly different conditions ci can be
associated with each alternative qi, denoted qi with ci.

Pv(w) = Pq1 (w) ∪ ... ∪ Pqr (w) for v ∈ V (1)

For the tree patterns on the righthand sides, we define the parse sets Pq(w) via
structural recursion over pattern q:

Pa(w) = if w = a then {a} else ∅ for a ∈ A (2)
PN (w) = if w = ε then {N} else ∅ for N ∈ Σ (3)
Pq(w) = {N(x1, ..., xr)|xi ∈ Pqi (wi) for q = N(q1, ..., qr), (4)

w = w1...wr}
Pq with c(w) = if c(w) then Pq(w) else ∅ (5)

Note that in Equation 4, w is split into r subwords in all possible ways.
Finally, we define

PG(w) = \PAx(w) (6)

where \PAx(w) is the PAx-component of the least fixpoint solution to the above
equation system.
We now turn the equation system into a top-down, recursive yield parser. Sub-
words of a string w = a1...an are indicated by index pairs: w(i,j) = ai+1...aj .
The length of w(i,j) is j − i, and w(i,k)w(k,j) = w(i,j). When w is the string to
be parsed, we often write (i, j) instead of w(i,j). Parsers are functions defined
on yield strings, returning lists (rather than sets) of trees. A parser pv(w) com-
putes Pv(w), for each v ∈ V . A parser fails by returning an empty list. We shall
use list comprehension notation, in analogy to set notation: [f(x, y)|x ∈ xs, y ∈
ys, φ(x, y)] denotes the list of all values f(x, y) such that x is from the list xs, y
from the list ys, and the argument pair (x, y) satisfies the predicate φ. [] denotes
the empty list, ++ denotes list concatenation.

pG(w) = pAx(0, n) (7)
pv(i, j) = pq1(i, j)++...++pqr (i, j) for v ∈ V (8)
pa(i, j) = if w(i,j) = a then [a] else [] for a ∈ A (9)
pN (i, j) = if w(i,j) = ε then [N] else [] for N ∈ Σ (10)
pq(i, j) = [t(x1, ..., xr)|x1 ∈ pq1(i, k1), ..., xr ∈ pqr(kr−1, j)] (11)

for q = t(q1, ..., qr), t ∈ Σ, i ≤ k1... ≤ kr−1 ≤ j

pq(i, j) = [t|t ∈ pq′(i, j), c(i, j)] for q = q′ with c (12)

The partial correctness of the yield parsers is obvious, as they are an operational
form of the equations defining the parse sets Pv(w). Termination, however, is a
problem. The parser does not terminate if the grammar allows an infinite set of

parses, resulting from circular productions chains that produce tree nodes, but
an empty contribution to the yield (e.g. v → N(v)). The parser may also run
into futile recursion when pv(i, j) recalls itself on the same subword (i, j) in the
production v → N(v, a), a ∈ A, rather than restricting its efforts to (i, j − 1).
And even when termination occurs, the parser will surely enjoy the thrills of
combinatorial explosion, because its top-down nature leads it to parsing certain
subtrees an exponential number of times. Two more steps are needed to turn
the yield parser into an effective and efficient program.

3.4 Tabulating yield parsers

We turn the nondeterministic, top-down parser into a bottom-up CYK-style
parser in two steps: We add tabulation of parser results, and we provide the
necessary bottom-up control structure.
Adding tabulation. Dynamic programming is recursion combined with tabulation
of intermediate results. A DP table is nothing but a function mapping a (finite)
index domain to some values. When f is a function of a pair of integers, let
us denote by f ! a table such that f !(i, j) = f(i, j).2 Reconsider equations 7 -
12. Replace each occurrence of a parser pv on either side of the equations by
the corresponding table pv!, according to the notation introduced above. E. g.,
a parser call pv(i, j) now turns into the table lookup pv!(i, j), and Equation 8
turns into a table definition pv!(i, j) = There is no need to tabulate parsers
pG and pa, as they perform only a constant amount of computation per call.
Parsers pq need not be tabulated either, as they do not perform redundant work
once all the pv are tabulated. In pasting together the trees they construct, the
parsers pq use pointers to subtrees already stored in the tables pv!, rather than
copying subtrees.
Adding control structure. Unless we assume a data-flow oriented implementation
language, we must organize the calculation of table entries in a way such that all
entries are computed before they are used. Furthermore, the splitting of subwords
in Equation 11 should be restricted to subwords of appropriate size.

Definition 10 (Yield size.) The yield size of a nonterminal symbol v of grammar
G is the pair (infx∈y(L(v)) |x|, supx∈y(L(v)) |x|) if L(v) 6= ∅, and (∞, 0) otherwise.
2

Since all parser calls only access parser results on the same or a smaller subword
of the input, all the recurrences as derived in the previous paragraph are arranged
in a double for-loop, such that shorter subwords are parsed before longer ones.
Parsers that do not need tabulation are defined outside these for-loops.
In the loop body, recurrences for all tabulated parsers are arranged in depen-
dency order. The notation pqi?(ki−1, ki) denotes pv!(ki−1, ki) if qi is a vari-
able v and hence pv is tabulated, and otherwise it denotes pqi(ki−1, ki). Equa-
tion 16 gives rise to inner loops, with subscript ranges determined by yield size
2 This notation is borrowed from Haskell, where (f !) actually turns an array into a

function.

analysis. For q ∈ TΣ(V) this analysis computes low′(q) = inft∈L(q) |y(t)| and
up′(q) = supt∈L(q) |y(t)|. This is detailed in Section 5.2. Altogether, we obtain
the following refined definition for the tabulating yield parser:

pG(w) = pAx(0, n) (13)
pa(i, j) = if w(i,j) = a then [a] else [] for a ∈ A∗ (14)
pN (i, j) = if w(i,j) = ε then [N] else [] for N ∈ Σ (15)

pq(i, j) = [t(x1, ..., xr)|x1 ∈ pq1?(i, k1), ..., xr ∈ pqr?(kr−1, j)]
for q = t(q1, ..., qr), t ∈ Σ (16)

for k1, ..., kr−1 such that k0 = i, kr = j,

max(ki−1 + low′(qi))(ki+1 − up′(qi+1)) ≤ ki ≤
min(ki−1 + up′(qi))(ki+1 − low′(qi+1))

pq(i, j) = [t|t ∈ pq′(i, j), c(i, j)] for q = q′ with c (17)
for j = 0 to n

for i = 0 to j

pv!(i, j) = pq1(i, j)++...++pqr(i, j) for v ∈ V (18)

3.5 Asymptotic efficiency of tabulating yield parsers

The number of parses for w ∈ A∗ can be exponential in |w|. An example is the
grammar v → N(a, v) | M(a, v) | b, where the yield string anb has 2n parses.
In such a case, the size of the answer dominates the computational cost both in
terms of time and space. In the subsequent analysis, we assume that the number
of parses computed is bounded by a constant k. This is achieved by application of
the objective function. Often only one or the k-best parses are retained, subject
to some criterion of optimality.
The space requirements of the yield parser are determined by the table sizes.
There are at most |V | tables of size (n+1)×(n+1), yielding O(n2∗|V |∗k) overall.
For the runtime efficiency of a yield parser, the critical issue is the number of
moving subword boundaries when w is split into subwords w1...wr according to
Equation 16. If for all i, |wi| is proportional to |w|, then this splitting introduces
an (r − 1)-fold nested for-loop in addition to the double for-loop iterating over
subwords (i, j). Yield size analysis serves to avoid this worst case where possible.

Definition 11 (Width of productions and grammar.) Let t be a tree pattern,
and let k be the number of nonterminal or lexical symbols in t whose yield
size is not bounded from above. We define width(t) = k − 1. Let π be a pro-
duction v → q1| . . . |qr. width(π) = max{width(q1, . . . , qr)}, and width(G) =
max{width(π) | π production in G}. 2

Theorem 12 The execution time of a tabulating yield parser for tree grammar
G on input w of length n is O(n2+width(G)).

Proof: The outer for-loops lead to a minimal effort of O(n2). Inner for-loops
generated from the righthand side patterns do not contribute to asymptotic
efficiency if their index range is independent of n. The maximum nesting of for-
loops with index range proportional to n arising from a given production is equal
to the width of the production. Hence, the width of the grammar determines
overall asymptotic efficiency as stated. 2

Grammar transformations can greatly improve efficiency, but their feasibility
depends on properties of the evaluation algebra. Two such transformations are
described with the program development methods in [8].

4 Embedding ADP in Haskell

The ADP notation was designed such that its operational semantics can be
defined adapting the technique of parser combinators [13].

4.1 Parser and combinator definitions

The input is an array x with bounds (1, n). A subword xi+1, ..., xj of x is rep-
resented by the subscript pair (i,j). Functions char and axiom explicitly de-
pending on input x and n = length x are given for documentation here; they
must actually be defined within the main function. A parser is a function that
given a subword of the input, returns a list of all its parses. The lexical parser
char recognizes any subword of length 1 and returns it, while string recognizes
a possibly empty subword.

> type Parser b = (Int,Int) -> [b]

char :: Parser Char

char (i,j) = [x!j | i+1 == j]

> string :: Parser (Int,Int)

> string (i,j) = [(i,j) | i <= j]

The nonterminal symbols are interpreted as parsers, with the productions serv-
ing as their mutually recursive definitions. The operators introduced in ADP
notation are defined as parser combinators: ||| concatenates result lists of al-
ternative parses, and <<< grabs the results of subsequent parsers connected via
~~~ and successively “pipes” them into the tree constructor. Combinator ...
applies the objective function to a list of answers.

> infixr 6 |||

> (|||) :: Parser b -> Parser b -> Parser b

> (|||) r q (i,j) = r (i,j) ++ q (i,j)

> infix 8 <<<

> (<<<) :: (b -> c) -> Parser b -> Parser c

> (<<<) f q (i,j) = map f (q (i,j))



> infixl 7 ~~~

> (~~~) :: Parser (b -> c) -> Parser b -> Parser c

> (~~~) r q (i,j) = [f y | k <- [i..j], f <- r (i,k), y <- q (k,j)]

> infix 5 ...

> (...) :: Parser a -> ([a] -> [a]) -> Parser a

> (...) p h (i,j) = h (p (i,j))

The operational meaning of a with-clause can be defined by turning with into
a combinator, this time combining a parser with a filter. Finally, the keyword
axiom of the grammar is interpreted as a function that returns all parses for the
axiom symbol ax and the complete input.

> type Filter = (Int, Int) -> Bool

> with :: Parser a -> Filter -> Parser a

> with p c (i,j) = if c (i,j) then p (i,j) else []

axiom :: Parser a -> [a]

axiom ax = ax (0,n)

Although these functions are called parsers, they do not necessarily deliver trees.
The answers are solely computed via the functions of the evaluation algebra,
whatever their type is.

4.2 Tabulation

As in Section 3, adding tabulation is merely a change of data type. The function
table records the results of a parser p for all subwords of an input of size n. The
function p is table lookup. Note the invariance p (table n f) = f.

> type Parsetable a = Array (Int,Int) [a]

> table :: Int -> Parser a -> Parsetable a

> table n q = array ((0,0),(n,n))

> [((i,j),q (i,j)) | i<- [0..n], j<- [i..n]]

> p :: Parsetable a -> Parser a

> p t (i,j) = if i <= j then t!(i,j) else []

4.3 Yield parser combinators for bounded yields

If the length of the yield of a nonterminal v is restricted to a fixed interval known
from yield size analysis, the ~~-combinator may be used to restrict the parsing
effort to subwords of appropriate length range. Note the direct correspondence
to the calculation of the loop bounds ki defined in Equation 16.

> infixl 7 ~~,-~~ , ~~-

> (~~) :: (Int,Int) -> (Int,Int)



> -> Parser (b -> c) -> Parser b -> Parser c

> (~~) (l,u) (l’,u’) r q (i,j)

> = [x y | k <- [max (i+l) (j-u’) .. min (i+u) (j-l’)],

> x <- r (i,k), y <- q (k,j)]

> (-~~) q r (i,j) = [x y | i<j, x <- q (i,i+1), y <- r (i+1,j)]

> (~~-) q r (i,j) = [x y | i<j, x <- q (i,j-1), y <- r (j-1,j)]

The combinators -~~ and ~~- are special cases of the ~~~ combinator in an-
other way: they restrict the lefthand (respectively righthand) parser to a single
character. The parser pal3 in Section 2.9 avoids all uses of ~~~ and runs in
O(n2).

5 Compiling and optimizing ADP algorithms

5.1 Experience with the Haskell implementation

For about two years, we have been using the Haskell embedding for reformulation
and unification of classical DP algorithms, for teaching, and for development of
new applications. While this has been a worthwhile effort intellectually, there
are two serious shortcomings of this approach from the practical point of view.
The first concern is efficiency. Although the Haskell prototype has the same
asymptotic efficiency as an imperative implementation, its space requirements
prohibit application to large size biosequence data.
The second concern is a methodical one: In sophisticated examples, we strive
for best runtime efficiency by using the special combinators for bounded yields
wherever possible. This is sometimes nontrivial, and always error-prone. Based
on this experience, it appears most beneficial to automate yield size and depen-
decy analysis.

5.2 Yield size analysis

Let IN∞ = IN ∪ {∞}. The minimal and maximal yield sizes for all nonterminal
symbols are described by a pair of functions low, up : V → IN∞ and their exten-
sions to arbitrary tree patterns low′, up′ : TΣ(V ) → IN∞. They are computed
using the following equation system: Let v → q1|...|qr be the production defining
v.

(low(v), up(v)) = (
r

min
i=1

low′(qi),
r

max
i=1

up′(qi)) for v ∈ V (19)

(low′(w), up′(w)) = (|w|, |w|) for w ∈ A∗ (20)

(low′(q), up′(q)) = (
r∑

i=1

low′(qi),
r∑

i=1

up′(qi)) for q = t(q1, ..., qr),
t ∈ Σ (21)

(low′(q), up′(q)) = (max low′(q′) cl, min up′(q′) cu) for q = q′ with c (22)
(low′(v), up′(v)) = (low(v), up(v)) for v ∈ V (23)



In Equation 22, the bounds cl and cu associated with a syntactic predicate c are
defined as cl = min{|x| | c(x)} and cu = max{|x| | c(x)} if the maximum exists,
and cu = ∞ otherwise. In general, they cannot be determined automatically,
but must be specified explicitly by the designer of the grammar.
These equations are monotonically decreasing in the first component, and mono-
tonically increasing in the second. The solution can be computed by Kleene
fixpoint iteration, starting with the initial value (low(x), up(x)) = (∞, 0). The
low component always converges, since all strictly decreasing chains in IN∞ are
finite. The strictly increasing chains of up(x) are not necessarily finite. In the
absence of syntactic conditions one can show that if up(v) is still increasing after
|V | iterations, then up(v) = ∞ is the least fixpoint solution. The handling of
conditions in full generality is an open problem. In any case, (cl, cu) = (0,∞) is
a safe approximation.

5.3 Dependency analysis

The nested for-loops of the parser guarantee that when a word w(i,j) is to be
parsed, all of its proper subwords have been parsed already. A problem arises
with chain productions: In yield grammars, the analogue to chain productions
u→ v found in string grammars is the situation where u→ C[...v...]→∗ C[...t...]
such that y(C[...t...]) = y(t). In other words, the tree context generated from u
around v does not contribute to the yield. We denote this u →chain v. In this
situation, a parser must reduce the input word w(i,j) to v before reducing it to u
in the same iteration of the nested loop. The relation→chain can be determined
directly using the results from yield size analysis:

Let u→ q1|...|qr.

u→chain v iff
r∨

i=1

d(qi) where (24)

d(q) =
r′∨

i=1

(
i−1∑

j=1

low′(q′j) ≡ 0 ∧ d(q′i) ∧
r′∑

j=i+1

low′(q′j) ≡ 0) for q = t(q′1, ..., q
′
r′),

t ∈ Σ

d(q) = d(q′) for q = q′ with c

d(q) = v′ ≡ v for q = v′ ∈ V

d(q) = false for q = w ∈ A∗

low′ is the above extension of low. The order of equations in the loop body (cf.
Section 3.4) is chosen according to a topological sort with respect to →chain.
Should→chain be circular, a grammar design error is reported (see Section 6.2).
The results of yield size and dependency analysis complete the definition of the
tabulating yield parser.
Stepping back mentally from these technicalities for a moment, we observe the
following: Anyone developing DP recurrences in the traditional way implicitly
must solve the problems of yield size and dependency analysis, in order to define
the control structure and the subscripts in the table accesses. Moreover, she must



do so without the guiding help of a tree grammar. This explains much of the
technical difficulty of developing correct recurrences.

5.4 Translation to C

We are developing a compiler translating ADP algorithms to C. Aside from
parsing the ADP program and producing C code, the core of the compiler is
implementing the grammar analyses described in Section 5. With respect to the
evaluation algebra we follow the strategy that simple arithmetic functions are
inlined, while others must be provided as native C functions. Compiler options
provide a simplified translation in the case where the evaluation algebra com-
putes scalar answers rather than lists. As an example, the code produced for the
grammar Pal3 is shown in Appendix A.

5.5 Haskell source-to-source compilation

Yield size analysis determines the entire information required for minimal index
ranges in all loops. We added a source-to-source option to the compiler, repro-
ducing ADP input with all ~~~ operators replaced by variants bound to exact
yield sizes. Hence, the user is no longer committed to delicate tuning efforts.

6 The ADP multi-paradigm programming system

6.1 Working with ADP

As a programming methodology, the ADP approach gives a clear five step guid-
ance for developing a new algorithm [8]. Prior to the work reported here, the
ADP program had to be translated into C by hand, following the definitions of
Section 3. The C program was then tested systematically against the Haskell
prototype, a procedure that guarantees much higher reliability than ad-hoc test-
ing. This has been applied to non-trivial problems in RNA structure prediction
[5], DNA sequence comparison [6] and gene prediction (ongoing work).
Still, the main difficulties with this approach were twofold: It proved to be time
consuming to produce a C program equivalent to the Haskell prototype. Further-
more, for sake of efficiency developers were tempted to perform ad-hoc yield size
analysis and used special combinators in the prototype. This introduced through
the backdoor the possibility of subscript errors otherwise banned by the ADP
approach. The compiler now developed eliminates both problems.

6.2 Grammar analysis support for improved prototyping

Grammar analysis further supports the prototyping phase by reporting design
errors reflected by grammar anomalies. Infinitely many derivations of a given
yield string are possible iff the relation→chain is circular. This is detected during
dependency analysis. An error message can be produced instead of a parser that



may not terminate on some input. Useless nonterminals, which cannot produce
a finite terminal tree and hence do not contribute to the language, are recognized
by yield size analysis. u is useless, iff low(u) = ∞. They indicate oversights in
the designer’s case-analysis. No parser needs to be generated for nonterminal u,
and the designer might appreciate a warning in this situation.

6.3 Future work

Our prevalent goal is to create a stable elementary ADP programming system
that, thanks to the C compilation, can be utilized to speed up program devel-
opment in large-scale applications. A number of advanced DP techniques have
already experimented with, like attributed nonterminals and parsers which use
precomputed information. The current formulation of ADP is directed towards
string and applies to (single) string analysis and (pairwise) string comparison.
Beyond strings, we have first results showing that ADP can be extended to trees
[12], while other data domains have not yet been considered.

References

1. A.V. Aho and J.D. Ullman. The Theory of Parsing, Translation and Compiling.
Prentice-Hall, Englewood Cliffs, NJ, 1973. I and II.

2. R. Bellman. Dynamic Programming. Princeton University Press, 1957.
3. W.S. Brainerd. Tree generating regular systems. Information and Control, 14:217–

231, 1969.
4. R. Durbin, S. Eddy, A. Krogh, and G. Mitchison. Biological Sequence Analysis.

Cambridge University Press, 1998.
5. D. Evers and R. Giegerich. Reducing the conformation space in RNA structure

prediction. In German Conference on Bioinformatics, pages 118–124, 2001.
6. R. Giegerich. A systematic approach to dynamic programming in bioinformatics.

Bioinformatics, 16:665–677, 2000.
7. R. Giegerich, S. Kurtz, and G. F. Weiller. An algebraic dynamic programming

approach to the analysis of recombinant DNA sequences. In Proc. of the First
Workshop on Algorithmic Aspects of Advanced Programming Languages, pages 77–
88, 1999.

8. R. Giegerich and C. Meyer. Algebraic dynamic programming. In Proc. of the
9th International Conference on Algebraic Methodology And Software Technology,
2002. To appear.

9. R. Giegerich and K. Schmal. Code selection techniques: Pattern matching, tree
parsing and inversion of derivors. In Proc. European Symposium on Programming
1988, Lecture Notes in Computer Science 300, Springer Verlag, pages 247–268,
1988.

10. S.L. Graham and M.A. Harrison. An improved context-free recognizer. ACM
Transactions on Programming Languages and Systems, 2(3):415–462, 1980.

11. D. Gusfield. Algorithms on Strings, Trees, and Sequences. Computer Science and
Computational Biology. Cambridge University Press, 1997.

12. M. Höchsmann. Tree and Forest Alignments - An Algebraic Dynamic Programming
Approach for Aligning Trees and Forests. Master’s thesis, Bielefeld University, Mai
2001.



13. G. Hutton. Higher order functions for parsing. Journal of Functional Programming,
3(2):323–343, 1992.

14. C. Meyer and R. Giegerich. Matching and Significance Evaluation of Combined
Sequence-Structure Motifs in RNA. Z.Phys.Chem., 216:193–216, 2002.

15. T.L. Morin. Monotonicity and the principle of optimality. Journal of Mathematical
Analysis and Applications, 86:665–674, 1982.

16. E. Rivas and S. Eddy. A dynamic programming algorithm for RNA structure
prediction including pseudoknots. J. Mol. Biol., 285:2053–2068, 1999.

17. D.B. Searls. Linguistic approaches to biological sequences. CABIOS, 13(4):333–
344, 1997.

18. K. Sikkel and M. Lankhorst. A parallel bottom-up tomita parser. In G. Görz,
editor, 1. Konferenz Verarbeitung natürlicher Sprache (KONVENS’92), Nürnberg,
Germany, Informatik Aktuell, pages 238–247. Springer-Verlag, 1992.

19. P. Steffen. Basisfunktionen für die Übersetzung von Programmen der Algebrais-
chen Dynamischen Programmierung. Master’s thesis, Bielefeld University, Febru-
ary 2002. In German.

20. M. Tomita. Efficient Parsing for Natural Language — A Fast Algorithm for Prac-
tical Systems. Int. Series in Engineering and Computer Science. Kluwer, Hingham,
MA, 1986.

21. M. Zuker and S. Sankoff. RNA secondary structures and their prediction. Bull.
Math. Biol., 46:591–621, 1984.

Appendix A: C-Code for Pal3 Example
void calc_pal3(int i, int j) {

struct t_result *v[8];

if ((j-i) >= 0) { v[0] = allocMem(0); }
else { v[0] = NULL; }; /* n s = 0 */

if ((j-i) >= 2) { v[1] = allocMem(pal3[i+1][j-1]

+ isEqual(x[i+1], x[j])); }
else { v[1] = NULL; }; /* r a s b = s + isEqual(a,b) */

if ((j-i) >= 1) { v[2] = allocMem(pal3[i+1][j]); }
else { v[2] = NULL; }; /* d _ s = s */

if ((j-i) >= 1) { v[3] = allocMem(pal3[i][j-1]); }
else { v[3] = NULL; }; /* i s _ = s */

v[4] = append(v[2], v[3]); /* ||| */

v[5] = append(v[1], v[4]); /* ||| */

v[6] = append(v[0], v[5]); /* ||| */

v[7] = maximum_v(v[6]); /* h x = [maximum x] */

freemem_result(v[6]);

pal3[i][j] = (*v[7]).value;

freemem_result(v[7]);

};

void mainloop() {
int i; int j;

for (j=0; j<=n; j++)

for (i=j; i>=0; i--)

calc_pal3(i, j);

};


