
ADP Compiler 0.8 manual

Peter Steffen1, Marco Rüther, Christian Lang
and Georg Sauthoff

1Faculty of Technology, Bielefeld University, 33594 Bielefeld, Germany,
email: psteffen@techfak.uni-bielefeld.de

February 9, 2007

Contents

1 Introduction 1

2 Quickstart 1

3 The ADP compiler’s command line interface 3
3.1 OPTIONS . 4
3.2 Table design . 4
3.3 Target code generation . 5

1 Introduction

This manual gives a short overview of the ADP compiler. Section 2 gives an exemplified introduction
to the ADP compiler’s compilation process. Section 3 then gives a complete account of the compiler’s
command line interface.
This manual does not contain any information about the internals of the ADP compiler. See Peter
Steffen’s PhD thesis (file diss.pdf in the compiler distribution) for some internal details of the ADP
compiler.

2 Quickstart

Copy the file ElMamun.lhs out of the directory INSTALLDIR/share/adpc/examples. Then type
adpc ElMamun.lhs

This generates a number of files, the most important ones the files Makefile and ElMamun.xml. The file
Makefile contains the compile targets necessary to compile ElMamun.lhs into the desired C target code
files. In the next step, simply type
make

This generates the main target file ElMamun.c and for every algebra in the source file (seller, buyer,
count) a target code file ElMamun algebra.c. These target files are then each compiled by the C compiler
gcc and linked together to the executable binary file ElMamun. See Figure 1 for an overview of the
compilation process.
After the compilation finished, you can simply start ElMamun by typing
./ElMamun

This gives the following interactive command line:

1

Figure 1: Adpc framework

2

Welcome to ElMamun!

ElMamun>

At the command prompt you need to type a formula that shall be evaluated by the ElMamun program.
For example, type:
ElMamun> 1+2*3*4+5

This gives the following result:

ElMamun> 1+2*3*4+5

Input: 1+2*3*4+5
Algebra: count, score: 51

===

Input: 1+2*3*4+5
Algebra: buyer, score: 30
Suboptimal range: [30 - 35]

Score | Candidate

30 | ((1+((2*3)*4))+5)
30 | ((1+(2*(3*4)))+5)
33 | (((1+(2*3))*4)+5)
30 | (1+(((2*3)*4)+5))
30 | (1+((2*(3*4))+5))
35 | (1+(2*((3*4)+5)))

===

Input: 1+2*3*4+5
Algebra: seller, score: 81
Suboptimal range: [76 - 81]

Score | Candidate

81 | (((1+2)*3)*(4+5))
81 | ((1+2)*(3*(4+5)))

===
ElMamun>

The first result shown is the result for algebra count. It states that there are 51 ways to evaluate the
formula. The second result is the result for algebra buyer. It is a minimizing algebra, and the best score
for the formula is 30. The list below shows six results that occur in the suboptimal range of 30 to 35.
The last result then shows the results for algebra seller. It is a maximising algebra, and the best score
for this input is 81. There exist two candidates that achieve this score.
Repeat this compilation process with the second program in the examples directory, RNAfold.lhs.

3 The ADP compiler’s command line interface

The ADP compiler consists of two executable programs. The program adpc is responsible for creating
the main program interface of the target program, the Makefile, and several other parts. Apart from
the name of the input file, adpc has no command line options. The Makefile then contains the calls

3

to the main ADP compiler executable, adpcompile. This program does the main work of the ADP
compiler and has a lot of command line options. See the Makefile for a typical command line call. In
a typical application setting, you do not need to call adpcompile directly. This is done automatically
by the Makefile. But there exist cases where it is necessary to call adpcompile separately from the
adpc program flow. In these cases, you need to take care of the adpcompile command line options. The
following section gives a complete description of the adpcompile command line interface.

3.1 OPTIONS

-h Display this information
This option shows the adpcompile command line interface.
-H option Display detailed information on <option>

This displays the corresponding section of the adpcompile manual for the given command line option.
-c file Compile to imperative target code
Compile the given adp file to C.
-z file Optimize combinators in ADP source code
This mode reads the given ADP file, optimizes the next-combinators in it, and generates an optimized
copy of the given file.
-l file Generate recurrences typeset in LaTeX
This option generates recurrences typeset in LaTeX.
-g file Generate ADP template for signature
This option generates a ADP template for the given signature. The template consists of the algebra
type, enumeration and count algebras, the definition of the pair-operator and a simple grammar, that
generates the term algebra.

3.2 Table design

-tg file -ctg Derive good table configurations
Option -tg generates a good table configuration. A configuration is good, if it achieves a polynomial
runtime of the given ADP program with the minimal number of DP tables. While option -tg stops after
the table design, the option -ctg can be used together with option -c for the imperative target code
generation.
-to file -cto Derive optimal table configurations
Option -to generates an optimal table configuration. A configuration is optimal, if it achieves the best
possible asymptotic runtime with the minimal number of DP tables. Again, option -to starts a stand-
alone table design, while -cto optimizes the tables during the target code generation.
-tx file -ctx Derive approx. optimal table configurations
Since the table design is an NP-complete problem, options -tg and -to are not suitable for larger
grammars. Our experience showed that grammars with up to 40 nonterminal symbols can be processed
with option -to. With more nonterminals, the running time of the optimization can easily go into
hours and days. Here the options -tx and -ctx can be used. These options calculate optimal table
configurations with the use of an approximal approach (GRASP). In our experience this approximal
results are as good as the results from option -to.
-iuc Ignore user annotated table configuration
To support the table design phase, the input program can be annotated with the keywords ”tabulated”
and ”nontabulated”. This means, a production annotated with ”tabulated” has to be tabulated in every
case, and a production annotated with ”nontabulated” must not be tabulated. This user annotations
work together with large grammars and options -tg and -to, which would otherwise calculate too long.
With option -iuc the ADP compiler ignores all user annotations.
-tadd number Maximal number of additional tables
Option -tadd can be used together with options -to and -tx to improve the constant factor of an optimal
table configuration. This is done by introducing a given number of additional tables. If this improves

4

constant factors by the factor given with option -taddc the additional tables are added to the table
configuration.
-taddc number Necessary constant factor improvement for add. tables
Option -taddc specifies the necessary constant factor improvement for option -tadd
-taddn number Expected input length for constant factor improvement
Option -taddn specifies the expected input length for the constant factor improvement.

3.3 Target code generation

-bt mode Generate backtracing code (enumeration algebra needed) mode: s -> single, so -> suboptimal
With option -bt the ADP compiler generates backtracing code. The given mode can be either s for a
single-result-backtrace, or so for a suboptimal backtrace.
-W Include window mode
Option -W generates program code for a sliding window mode. Beginning with position 1 of the input
sequence, the analysis is repeatedly processed on subsequences of the specified size. After each calcula-
tion, the results are printed out and the window is moved by the window position increment (-W), until
the end of the input sequence is reached.
-al alg .. alg Specify order of algebra usage
Option -al specifies the algebras for the compilation.
-alpp alg .. alg Specify pretty printing algebras
Option -alpp specifies the pretty printing algebra that shall be used for the candidate ouput in the
backtrace modes.
-cs alg Automatically generate signature and enumeration for algebra <alg>

The option -cs automatically generates the signature and enumeration algebra from the given algebra.
This option is useful for the backtracing modes.
-vl verbosity level Specify output verbosity level verbosity level: t -> target, r -> trace, rr -> detailed
trace d -> debug
Option -vl specifies the verbosity level of the compilation.
-o filename Output to <filename>
Option -o specifes the output file.
-v Show version
This option shows the adpcompile version number.

5

