
Compiling a Domain Specific Language for Dynamic

Programming

Dissertation zur Erlangung des akademischen Grades eines Doktors der
Naturwissenschaften (Dr. rer. nat.) der Technischen Fakultät der Universität Bielefeld

vorgelegt von
Peter Steffen

Bielefeld, im Oktober 2006



Gedruckt auf alterungsbeständigem Papier nach ISO 9706.



3

Acknowledgments

I thank my supervisor Robert Giegerich for assigning me this interesting topic and for all
his support during the work on this thesis. Thanks also go to Jens Stoye for his spontaneous
willingness to be a co-referee.

Jens Reeder helped a lot by proofreading this thesis.

I thank my colleagues in the practical informatics department for the nice work atmosphere,
especially Elke Möllmann, my office colleague for several years.

Marco Rüther worked hard for the development of the ADP compiler. Christian Lang and
Georg Sauthoff’s work on the table design problem was very inspiring and useful. I also
thank Stefanie Schirmer, who worked on the frontend for the ADP compiler.

Finally, I thank my parents and Alexandra for all their support.



4



Contents

1 Introduction 11

1.1 The role of dynamic programming in bioinformatics . . . . . . . . . . . . . . 11

1.2 State of the art . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.3 The development of ADP as a domain specific language . . . . . . . . . . . . 12

1.4 Shortcomings of the embedded DSL . . . . . . . . . . . . . . . . . . . . . . . 13

1.5 Overview of a new approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.6 Organization of this thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2 Algebraic dynamic programming 17

2.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2 Algebraic dynamic programming by example . . . . . . . . . . . . . . . . . . 17

2.2.1 RNA secondary structure prediction . . . . . . . . . . . . . . . . . . . 18

2.2.2 ADP methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.2.3 In-depth search space analysis . . . . . . . . . . . . . . . . . . . . . . . 23

2.3 The product operation on evaluation algebras . . . . . . . . . . . . . . . . . . 27

2.3.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.3.2 Implementing the product operation . . . . . . . . . . . . . . . . . . . 29

2.3.3 Efficiency discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.3.4 Applications of product algebras . . . . . . . . . . . . . . . . . . . . . 30

2.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.5 Algebraic Dynamic Programming as a domain specific language . . . . . . . . 36

2.5.1 Lexical parsers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5



6 CONTENTS

2.5.2 Nonterminal parsers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.5.3 Parser combinators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.5.4 Tabulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.5.5 Removing futile computations . . . . . . . . . . . . . . . . . . . . . . . 38

2.6 Tools for ADP development . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.6.1 Combinator optimization . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.6.2 Table design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.6.3 Template generator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3 Language definition 45

3.1 Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.2 Terminal parsers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.3 Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.4 Algebra functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.5 Compilation challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.5.1 Recurrence derivation . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.5.2 Table design for optimal asymptotic efficiency . . . . . . . . . . . . . . 51

3.5.3 Optimization in inner loops by change of data type . . . . . . . . . . . 52

3.5.4 Backtracing and suboptimal candidates . . . . . . . . . . . . . . . . . 53

4 Compiling ADP 57

4.1 Yield size analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.1.2 Yield size analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.1.3 Combinator optimization . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.2 Recurrence derivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.2.1 Subword convention . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.2.2 Intermediate language . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.2.3 Phase I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.2.4 Yield size constraint . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.3 Dependency analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.4 Code generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77



CONTENTS 7

4.4.1 Intermediate language for list comprehensions . . . . . . . . . . . . . . 78

4.4.2 Terminal parsers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.4.3 S → LC translation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.4.4 List elimination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.4.5 Target code generation . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.5 Table design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.5.1 Running Example: Palindromic structures in strings . . . . . . . . . . 87

4.5.2 Optimal tabulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4.6 Interface creation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5 Applications 105

5.1 RNAshapes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

5.1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

5.1.2 The abstract shapes approach . . . . . . . . . . . . . . . . . . . . . . . 106

5.1.3 The RNAshapes package . . . . . . . . . . . . . . . . . . . . . . . . . . 108

5.1.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

5.1.5 Implementing the shapes representative analysis . . . . . . . . . . . . 110

5.2 Benchmarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

5.2.1 RNAshapes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

5.2.2 RNAfold . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

5.2.3 pknotsRG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

5.2.4 RNAhybrid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

5.2.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

6 Outlook 115

A Proof: P ϑ
G has polynomial runtime if and only if ∆(G) ≤ 1 119

B RNAshapes 123

B.1 The RNAshapes interface by example . . . . . . . . . . . . . . . . . . . . . . 123

B.1.1 Shape representative analysis . . . . . . . . . . . . . . . . . . . . . . . 123

B.1.2 Shape probabilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

B.1.3 Consensus shapes analysis . . . . . . . . . . . . . . . . . . . . . . . . . 129



8 CONTENTS

B.1.4 Additional options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

B.2 Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

B.2.1 Sequence analysis modes . . . . . . . . . . . . . . . . . . . . . . . . . . 132

B.2.2 Additional modes (use with any of the above) . . . . . . . . . . . . . . 134

B.2.3 Analysis control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

B.2.4 Input/Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

B.2.5 Additional interactive mode commands . . . . . . . . . . . . . . . . . 138



CONTENTS 9

Foreword

Algebraic Dynamic Programming (ADP) is a method to develop algorithms of dynamic
programming. It was first introduced by R. Giegerich in 1998 [13]. In the following years,
a number of papers were published introducing additional techniques for the ADP method-
ology and describing applications developed with the help of ADP. The following articles
were published with the author’s participation. Some of the texts have been incorporated
in this thesis, constituting (most of) chapters 1 and 2 and sections 3.5, 4.5 and 5.1.

• R. Giegerich, C. Meyer, and P. Steffen. Towards a discipline of dynamic programming.
In S. Schubert, B. Reusch, and N. Jesse, editors, Informatik bewegt, GI-Edition -
Lecture Notes in Informatics, pages 3–44. Bonner Köllen Verlag, 2002.

• R. Giegerich, C. Meyer, and P. Steffen. A discipline of dynamic programming over
sequence data. Science of Computer Programming, 51(3):215–263, 2004.

• R. Giegerich and P. Steffen. Implementing algebraic dynamic programming in the
functional and the imperative programming paradigm. In E.A. Boiten and B. Möller,
editors, Mathematics of Program Construction, pages 1–20. Springer LNCS 2386,
2002.

• R. Giegerich and P. Steffen. Challenges in the compilation of a domain specific
language for dynamic programming. In Proceedings of the 2006 ACM Symposium on
Applied Computing, 2006.

• J. Reeder, P. Steffen, and R. Giegerich. Effective ambiguity checking in biosequence
analysis. BMC Bioinformatics, 6(153), 2005.

• M. Rehmsmeier, P. Steffen, M. Höchsmann, and R. Giegerich. Fast and effective
prediction of microRNA/target duplexes. RNA, 10:1507–1517, 2004.

• P. Steffen and R. Giegerich. Versatile and declarative dynamic programming using
pair algebras. BMC Bioinformatics, 6(224), 2005.

• P. Steffen and R. Giegerich. Table design in dynamic programming. Information and
Computation, 204(9):1325–1345, 2006.

• P. Steffen, B. Voß, M. Rehmsmeier, J. Reeder, and R. Giegerich. RNAshapes: an
integrated RNA analysis package based on abstract shapes. Bioinformatics, 22(4):500–
503, 2006.



10 CONTENTS



Chapter 1

Introduction

This chapter is taken from [19].

1.1 The role of dynamic programming in bioinformat-

ics

In biological sequence analysis, there arise numerous combinatorial optimization problems
that are solved by dynamic programming. Pattern matching in DNA or protein sequences,
comparison for local or global similarity, and structure prediction from RNA sequences are
frequent tasks, as well as the modeling of families of proteins and RNA structures with the
widely used Hidden Markov Models (HMMs) and stochastic context free grammars (SCFG),
respectively [8]. The scoring schemes associated with these optimization problems can be
quite sophisticated. The thermodynamic model for RNA structure prediction, for example,
has more than thousand parameters. This requires elaborate case analysis. Objective func-
tions often ask for more than a single answer, such as the best non-overlapping pattern hits
to a genome above a certain score threshold. Finally, biosequences tend to be long (from
77 characters for a tRNA, 10000 for a gene, 3000000 for a bacterial genome, to the 3 ∗ 109

nucleotides of a mammalian genome such as human or mouse). The time and space require-
ments for a dynamic programming algorithm are often limiting factors for the problems
the biologists need to solve. These characteristics of the application domain are responsible
for the fact that the development of reliable and efficient dynamic programming algorithms
in bioinformatics is a recurring challenge, in sharp contrast to the simplicity suggested by
the textbook examples of dynamic programming which we use to teach computer science
students.

11



12 CHAPTER 1. INTRODUCTION

1.2 State of the art

All these optimization problems share the characteristics that the logical problem decompo-
sition follows the decomposition of the input sequence into subwords. It has been observed
early that the resulting dynamic programming recurrences strongly resemble those of a
Cocke-Younger-Kasami [1] type parsing algorithm [46]. Pursuing this analogy, we have de-
veloped an algebraic style of dynamic programming (ADP) over sequential data. The search
space of the optimization problem at hand is described by a “yield grammar”, which is a
regular tree grammar generating a tree language, and implicitly a context-free language as
the set of leaf sequences of these trees. Scoring and optimization are described by an “eval-
uation algebra”, which interprets the tree operators as functions that compute local score
contributions, and hence solve larger problems when given optimal solutions of smaller ones,
consistent with the general paradigm of dynamic programming . This leads to a complete
specification of dynamic programming algorithms on a rather high level of abstraction.

1.3 The development of ADP as a domain specific lan-

guage

ADP was introduced by R. Giegerich in 1998 [13]. The paper provided a simple ADP
language, basically an ASCII notation for yield grammars and evaluation algebras, and an
implementation of this language as a domain specific language (DSL) embedded in the func-
tional programming language Haskell [37]. In the following years, a number of papers were
published introducing additional techniques for the ADP methodology [15, 18, 16, 17, 49].
During the development of the ADP language also a number of applications were developed
using ADP: An algorithm for the saturated RNA secondary structure folding problem [9],
an RNA folding algorithm based on the concept of abstract shapes (RNAshapes) [20], an
RNA folding algorithm for predicting secondary structures possibly containing pseudoknots
(pknotsRG) [39], and a program that predicts multiple potential binding sites of miRNAs
in large target RNAs (RNAhybrid) [42]. The ADP method made it possible to develop
these programs in relatively short time. But it also turned out that the embedded nature
of the ADP language has several shortcomings, the most important one the large time and
space requirements (see also below). So it became obvious that an automated compilation
of the embedded ADP language into an imperative programming language like C is needed.
For this, the work on the ADP compiler was started in 2001 with the author’s diploma
thesis [48]. Until now, the tools RNAshapes, RNAhybrid and pknotsRG were successfully
compiled with the help of the ADP compiler. An overview of the ADP compiler was given
in [19].



1.4. SHORTCOMINGS OF THE EMBEDDED DSL 13

1.4 Shortcomings of the embedded DSL

We have adopted the ADP method for the development of bioinformatics tools, and have
trained a first generation of bioinformatics students in it. We clearly see the advantages of
declarative specifications of dynamic programming algorithms, be it for education or for
algorithm design on new problems. But it also became clear that much additional work needs
to be done to bring this method to bear for every-day work in the field of bioinformatics.

Domain specific languages have a wide range of applications. See [53] for an extensive
annotated bibliography. They can be implemented by a variety of techniques, such as com-
pilation, interpretation, or embedding in a host language. The concept of embedded domain-
specific languages was introduced by Hudak [25]. The main advantage of this approach is
that the implementation of a new DSL is very easy, since the complete infrastructure of the
base language can be reused. In case of ADP, the ease of implementation comes with severe
disadvantages in using the language by its intended community. Our critique addresses five
points, which are all associated with the implementation of ADP as an embedded DSL.

1. While it is a rewarding experience to simply write down grammar and algebra, and
to obtain an executable program, frustration lures nearby: With any simple error, the
developer is confronted with the error handling of the host language. For example,
for an omitted nonterminal symbol in the right-hand side of a grammar rule, we get
an error message from the Haskell type system. Bioinformaticians are not normally
trained Haskell programmers, and it is as unlikely as it is unfortunate that this will
change in the near future. To make things worse – to understand such messages,
one not only needs to be Haskell -literate, but one also needs to know details of the
embedding. (This would probably also hold with any other embedded solution.) All
the abstraction provided by the ADP language is lost when an error is made.

2. A major advantage of ADP is that the logic of the algorithm can be designed largely
without being concerned about efficiency. However, once the tree grammar is designed,
the current implementation requires to add “efficiency annotations” to the grammar.
The user has to indicate which nonterminal symbols are mapped to dynamic program-
ming tables (storing intermediate results). It is also necessary to treat nonterminals
that generate only words of bounded length in a special way, in order to achieve best
polynomial runtime efficiency.

3. In the embedded implementation, the specification is literally interpreted as code in
the host language. There are numerous opportunities for optimization that are missed,
as they require processing steps at compile time. The standard optimizations of the
host language compiler cannot be expected to find these opportunities.

4. Being compiled by the Haskell compiler, the resulting program suffers from the typi-
cal efficiency disadvantage often observed when comparing (non-strict) functional to
imperative programs.



14 CHAPTER 1. INTRODUCTION

5. Finally, the use of a direct embedding in a host language entices programmers to
occasionally use features of the host language that are not strictly part of the ADP
language. This makes programs less transparent and less re-usable. Furthermore,
useful theorems pertaining to the abstract level of ADP may no longer hold for such
a patched implementation.

1.5 Overview of a new approach

The above points of critique can be alleviated by “exbedding” the ADP language from its
host language and providing a compiled, stand-alone implementation. Aside from being a
useful contribution for programmers in the field of bioinformatics, such a compiler project
also poses some compilation challenges that are interesting in their own right.

Points 1 and 5 require to write a specific compiler front-end. It can ensure language integrity,
and being aware of the semantics of yield grammars and evaluation algebras, it can generate
meaningful error messages to programmers. In principle, such a front end could also run as
a pre-processor with the current, embedded implementation. However, much is to be gained
from a more ambitious approach.

Points 2, 3, and 4 require a compiler middle- and back-end that does non-trivial analyses
of the ADP source program. It brings about the chance to completely free the ADP pro-
grammer from efficiency considerations, obviating the need to specify tabulation and special
treatment of nonterminal symbols. In the embedded implementation, such an un-annotated
program would have wasteful space and (in most cases) exponential runtime requirements;
the compiler can take the responsibility to find the program’s best possible space and time
efficiency, and generate code that achieves optimal asymptotic performance.

The latter point is peculiar to our compiler project, as compilers normally optimize con-
stant factors. Achieving optimal asymptotic efficiency must not be misunderstood as if the
compiler was to solve theoretical problems of problem complexity. It means that a given
(un-annotated) ADP specification can be implemented as a dynamic programming algo-
rithm with different selections of tables and also with different iterative constructs, which
can lead to a wide range of performances even in the asymptotic sense. We shall show that
optimal asymptotic performance is in fact a well-defined, but non-trivial problem, where the
compiler is likely to do a better job than human programmers with real-world applications.

1.6 Organization of this thesis

In the next section, we give a short review of the ADP language, mainly explained by ex-
ample. In Chapter 3 we define the ADP language supported by the compiler. In Section 3.5
we give a short overview of the tasks needed to compile this language into imperative tar-
get code. Chapter 4 then describes these compilation steps in detail. Finally, Chapter 5



1.6. ORGANIZATION OF THIS THESIS 15

introduces RNAshapes, a non-trivial ADP program generated with the help of the ADP
compiler. Chapter 5 also gives some benchmarks of several compiled ADP programs.



16 CHAPTER 1. INTRODUCTION



Chapter 2

Algebraic dynamic
programming

This chapter is taken from [49].

2.1 Overview

We set the stage for our exposition with a condensed review of the “algebraic” approach to
dynamic programming. Based on this programming style, we introduce a generic product
operation of scoring schemes. This leads to a remarkable variety of applications, allowing
us to achieve optimizations under multiple objective functions, alternative solutions and
backtracing, holistic search space analysis, ambiguity checking, and more, without additional
programming effort. We demonstrate the method on several applications for RNA secondary
structure prediction.

2.2 Algebraic dynamic programming by example

For our presentation, we need to give a short review of the concepts underlying the algebraic
style of dynamic programming (ADP): trees, signatures, tree grammars, and evaluation al-
gebras. We strive to avoid formalism as far as possible, and give an exemplified introduction
here, sufficient for our present concerns. See [17] for a complete presentation of the ADP
method. As a running example, we use the RNA secondary structure prediction problem.
We start with a simple approach resulting in an ADP variant of Nussinov’s algorithm [34]
and move on to a more elaborate example to permit the demonstration of our new concepts.

17



18 CHAPTER 2. ALGEBRAIC DYNAMIC PROGRAMMING

Nothing of the new ideas presented here is specific to the RNA folding problem. Prod-
ucts can be applied to all problems within the scope of algebraic dynamic programming,
including pairwise problems like sequence alignment [17].

2.2.1 RNA secondary structure prediction

C

U

G
C

A

G

U
A

G

G

U U G
G

U
C C

G

C
G

C

G

U C

U
G

CU
G

C
GG

U

G
C

C G

G

A

AU

C

G

U

C

G

G

U

U

G

G

Multiple Loop

Stacking Region

Hairpin Loop

Internal Loop

Bulge Loop (left)

Bulge Loop (right)

C

C A

C

UGG
C

G
CC

G

C
G

G

G
C

C

G

A

C
G

UC

G A

CU

A G

G C
C

G

C

U

C

G
GA

A

A

C

G

G

G

G

U

A

C

C

G

C

G

U
U

C

C
C

A

C

U

A

G

G

C

G

C

C

G
G

Figure 2.1: Typical elements found in RNA secondary structure.

While today the prediction of RNA 3D structure is inaccessible to computational methods,
its secondary structure, given by the set of paired bases, can be predicted quite reliably.
Figure 2.1 gives examples of typical elements found in RNA secondary structure, called
stacking regions (or helices), bulge loops, internal loops, hairpin loops and multiple loops.

The first approach to structure prediction was proposed by Nussinov in 1978 and was based
on the idea of maximizing the number of base pairs [34]. Today’s algorithms are typically
based on energy minimization.

2.2.2 ADP methodology

When designing a dynamic programming algorithm in algebraic style, we need to specify
four constituents:

• Alphabet: How is the input sequence given?

• Search space: What are the elements of the search space and how can they be repre-
sented?

• Scoring: Given an element of the search space, how do we score it?

• Objective: Given a number of scores, which are the ones we are interested in?



2.2. ALGEBRAIC DYNAMIC PROGRAMMING BY EXAMPLE 19

In the following, we will work through these steps for the RNA secondary structure predic-
tion problem.

Alphabet The input RNA sequence is a string over A = {a, c, g, u}. A is called the
alphabet and A∗ denotes the set of sequences over A of arbitrary length. ε denotes the
empty string. In the following, we denote the input sequence with w ∈ A∗.

Search space Given the input sequence w, the search space is the set of all possible
secondary structures the sequence w can form. In the ADP terminology, the elements of the
search space for a given input sequence are called candidates. Our next task is to decide how
to represent such candidates. Two possible ways are shown in Figure 2.2. The first variant
is the well-known dot-bracket notation, where pairs of matching parentheses are used to
denote pairing bases. The second variant, the tree representation, is the one we use in the
algebraic approach.

gucaugcaguguca

(...)((...))..

t1 =
Split

Pair

’g’ Split

Right

Nil ’u’

Right

Right

Nil ’c’

’a’

’u’

Split

Pair

’g’ Pair

’c’ Split

Right

Nil ’a’

Right

Right

Nil ’g’

’u’

’g’

’u’

Right

Right

Nil ’c’

’a’

gucaugcaguguca

.(.(((...))).)

t2 =
Split

Right

Nil ’g’

Pair

’u’ Split

Right

Nil ’c’

Split

Pair

’a’ Pair

’u’ Pair

’g’ Split

Right

Nil ’c’

Right

Right

Nil ’a’

’g’

’u’

’g’

’u’

Right

Nil ’c’

’a’

Figure 2.2: Two candidates in the search space for the best secondary structure for the
sequence gucaugcaguguca.

Such a tree representation of candidates is quite commonly used in RNA structure analysis,
but not so in other applications of dynamic programming. To appreciate the scope of the
ADP method, it is important to see that such a representation exists for any application of
dynamic programming [49].

In our example, the trees are constructed using four different node labels. Each label
represents a different situation, which we want to distinguish in the search space and in
the eventual scoring of such a candidate. A node labeled pair represents the paring of two
bases in the input sequence. The remaining nodes right, split and nil represent unpaired,



20 CHAPTER 2. ALGEBRAIC DYNAMIC PROGRAMMING

branching and empty structures. It is easy to see that each tree is a suitable representation
of the corresponding dot-bracket string. Also note that in each of the example trees, the
original sequence can be retrieved by collecting the leaves in a counter-clockwise fashion.
This is what we call the yield of the tree. The yield function y maps candidate trees back
onto their corresponding sequences.

The next important concept is the notion of the signature. The signature describes the
interface to the scoring functions needed in our algorithm. We can derive the signature for
our current example by simply interpreting each of the candidate trees’ node labels as a
function declaration:

nil : {ε} → Ans

right : Ans × A → Ans

pair : A × Ans × A → Ans

split : Ans × Ans → Ans

The symbol Ans is the abstract result domain. In the following, Σ denotes the signature,
TΣ the set of trees over the signature Σ.

With the concepts of yield and signature we are now prepared to give a first definition of
the search space:

Given an input sequence w and a signature Σ, the search space P (w) is the subset of trees
from TΣ, whose yield equals w. More formally, P (w) = {t ∈ TΣ|y(t) = w}.

This would suffice as a very rough description of the search space. In general, we want
to impose more restrictions on it, for example, we want to make sure, that the operator
pair is only used in combination with valid base pairs. For this purpose we introduce the
notion of tree grammar. Figure 2.3 shows grammar nussinov78, origin of our two example
trees. This grammar consists of only one nonterminal, s, and one production with four
alternatives, one for each of the four function symbols that label the nodes. Z denotes the
axiom of the grammar. The symbols base and empty are terminal symbols, representing
an arbitrary base and the empty sequence. The symbol basepairing is a syntactic predicate
that guarantees that only valid base pairs can form a pair -node.

nussinov78 Z = s

s → nil

empty

| right

s base

| pair

base s base

with basepairing
| split

s s

Figure 2.3: Tree grammar nussinov78.

Our refined definition of the search space is the following: Given a tree grammar G over
Σ and A and a sequence w ∈ A∗, the language described by G is L(G) = {t|t ∈ TΣ, t

can be derived from the axiom via the rules of G}. The search space spawned by w is
PG(w) = {t ∈ L(G)|y(t) = w}.



2.2. ALGEBRAIC DYNAMIC PROGRAMMING BY EXAMPLE 21

From the language theoretic viewpoint, PG(w) is the set of all parses of the sequence w for
grammar G. The method we use for constructing the search space is called yield parsing.
See Section 2.5 for a detailed description of yield parsing.

Scoring Given an element of the search space as a tree t ∈ L(G), we need to score this
element. In our example we are only interested in counting base pairs, so scoring is very
simple: The score of a tree is the number of pair -nodes in t. For the two candidates of
Figure 2.2 we obtain scores of 3 (t1) and 4 (t2). To implement this, we provide definitions
for the functions that make up our signature Σ:

Ansbpmax = IN
nilbpmax(s) = 0

rightbpmax(s,b) = s

pairbpmax(a,s,b) = s + 1

splitbpmax(s,s’) = s + s’

In mathematics, the interpretation of a signature by a concrete value set and functions
operating thereon is called an algebra. Hence, scoring schemes are algebras in ADP. Our
first example is the algebra bpmax for maximizing the number of base pairs. The subscript
bpmax attached to the function names indicates, that these definitions are interpretations of
the function under this algebra. In the following, we will omit these subscripts.

The flexibility of the algebraic approach lies in the fact that we don’t have to stop with
definition of one algebra. Simply define another algebra and get other results for the same
search space. We will introduce a variety of algebras for our second, more elaborate example
in Section 2.2.3.

Objective The tree grammar describes the search space, the algebra the scoring of so-
lution candidates. Still missing is our optimization objective. For this purpose we add an
objective function h to the algebra which chooses one or more elements from a list of can-
didate scores. An algebra together with an objective function forms an evaluation algebra.
Thus algebra bpmax becomes:

Ansbpmax = IN

bpmax = (nil, right, pair, split, h) where

nil(s) = 0

right(s,b) = s

pair(a,s,b) = s + 1

split(s,s’) = s + s’

h([]) = []

h([s1, . . . , sr]) = [ max
1≤i≤r

si]

A given candidate t can be evaluated in many different algebras; we use the notation E(t)
to indicate the value obtained from t under evaluation with algebra E .



22 CHAPTER 2. ALGEBRAIC DYNAMIC PROGRAMMING

Given that yield parsing constructs the search space for a given input, all that is left to
do is to evaluate the candidates in a given algebra, and make our choice via the objective
function h. For example, candidates t1 and t2 of Figure 2.2 are evaluated by algebra bpmax

in the following way:

h(bpmax(t1), bpmax(t2))
= [max(3, 4)]
= [4]

Definition 1 (Algebraic dynamic programming)

• An ADP problem is specified by a signature Σ over A, a tree grammar G over Σ, and
a Σ-evaluation algebra E with objective function h.

• An ADP problem instance is posed by a string w ∈ A∗. Its search space is the set of
all its parses, PG(w).

• Solving an ADP problem is computing h{E(t) | t ∈ PG(w)} in polynomial time and
space with respect to |w|.

In general, Bellman’s Principle of Optimality [2] must be satisfied in order to achieve poly-
nomial efficiency.

Definition 2 (ADP formulation of Bellman’s Principle) An evaluation algebra satisfies
Bellman’s Principle, if for each k-ary function f in Σ and all answer lists z1, . . . , zk, the
objective function h satisfies

h([f(x1, . . . , xk) | x1 ← z1, . . . , xk ← zk]) =

h([f(x1, . . . , xk) | x1 ← h(z1), . . . , xk ← h(zk)])

as well as

h( z ++ z′ ) = h( h(z) ++ h(z′) )

where ++ denotes list concatenation, and ← denotes list membership.

Bellman’s Principle, when satisfied, allows the following implementation: As the trees that
constitute the search space are constructed by the yield parser in a bottom up fashion, rather
than building them explicitly as elements of TΣ, for each function symbol f the evaluation
function fE is called. Thus, the yield parser computes not trees, but their evaluations. To
reduce their number (and thus to avoid exponential explosion) the objective function may
be applied at an intermediate step where a list of alternative answers has been computed.
Due to Bellman’s Principle, the recursive intermediate applications of the objective function
do not affect the final result.

As an example, consider the following two candidates (represented as terms) in the search
space for sequence aucg:



2.2. ALGEBRAIC DYNAMIC PROGRAMMING BY EXAMPLE 23

t3 = Split (Pair ’a’ Nil ’u’)

(Right (Right Nil ’c’) ’g’)

t4 = Split (Pair ’a’ Nil ’u’)

(Pair ’c’ Nil ’g’)

Since algebra bpmax satisfies Bellman’s Principle, we can apply the objective function h at
intermediate steps inside the evaluation of candidates t3 and t4:

h(bpmax(t3), bpmax(t4))
= h(Split (Pair ’a’ Nil ’u’)

(Right (Right Nil ’c’) ’g’),

Split (Pair ’a’ Nil ’u’)

(Pair ’c’ Nil ’g’))
= h(Split (h(Pair ’a’ Nil ’u’,

Pair ’a’ Nil ’u’))
(h(Right (Right Nil ’c’) ’g’,

Pair ’c’ Nil ’g’)))
= [max(max(1, 1) + max(0, 1))]
= [max(1 + 1)]
= [2]

Given grammar and signature, the traditional dynamic programming recurrences can be
derived mechanically to implement the yield parser. In the sequel, we shall use the name of
a grammar as the name of the function that solves the dynamic programming problem at
hand. Naturally, it takes two arguments, the evaluation algebra and the input sequence.

2.2.3 In-depth search space analysis

Note that the case analysis in the Nussinov algorithm is redundant – even the sequence
‘aa’ is assigned the two trees Right (Right Nil ’a’) ’a’ and Split (Right Nil ’a’) (Right Nil

’a’), which actually denote the same structure.

In order to study also suboptimal solutions, a non-redundant algorithm was presented in
[57]. Figure 2.4 shows the grammar wuchty98. Here the signature has 8 function symbols,
each one modeling a particular structure element, plus the list constructors (nil, ul,

cons) to collect sequences of components in a unique way. Nonterminal symbol strong
is used to capture structures without isolated (unstacked) base pairs, as those are known
to be energetically unstable. Purging them from the search space decreases the number of
candidates considerably. This grammar, because of its non-redundancy, can also be used
to study combinatorics, such as the expected number of feasible structures of a sequence of
length n.

This algorithm, as implemented in RNAsubopt [57], is widely used for structure prediction
via energy minimization. The thermodynamic model is too elaborate to be presented here,



24 CHAPTER 2. ALGEBRAIC DYNAMIC PROGRAMMING

wuchty98 Z = struct

struct → str

comps

| str

ul

singlestrand

| str

nil

empty

block → strong | bl

region strong

comps → cons

block comps

| ul

block

| cons

block ul

singlestrand

singlestrand → ss

region

strong →

(
sr

base strong base

| sr

base weak base

) with basepairing

weak →

(

hl

base region3 base

| sr

base bl

region strong

base

| sr

base br

strong region

base

|

ml

base cons

block comps

base

| sr

base il

region strong region

base ) with basepairing

region3 → region with minsize 3

Figure 2.4: Tree grammar wuchty98.



2.2. ALGEBRAIC DYNAMIC PROGRAMMING BY EXAMPLE 25

Ansenum = TΣ

enum = (str, ..., h) where
str(s) = Str s
ss((i,j)) = Ss (i,j)

hl(a,(i,j),b) = Hl a (i,j) b
sr(a,s,b) = Sr a s b

bl((i,j),s) = Bl (i,j) s
br(s,(i,j)) = Br s (i,j)
il((i,j),s,(i’,j’)) = Il (i,j) s (i’,j’)

ml(a,s,b) = Ml a s b
nil((i,j)) = Nil (i,j)

cons(s,s’) = Cons s s’
ul(s) = Ul s

h([s1, . . . , sr]) = [s1, . . . , sr]

Ansbpmax = IN

bpmax = (str, ..., h) where

str(s) = s
ss((i,j)) = 0
hl(a,(i,j),b) = 1

sr(a,s,b) = s + 1
bl((i,j),s) = s

br(s,(i,j)) = s
il((i,j),s,(i’,j’)) = s

ml(a,s,b) = s + 1
nil((i,j)) = 0
cons(s,s’) = s + s’

ul(s) = s
h([]) = []

h([s1, . . . , sr]) = [ max
1≤i≤r

si]

Anspretty = dot-bracket strings

pretty = (str, ..., h) where
str(s) = s

ss((i,j)) = dots(j-i)
hl(a,(i,j),b) = "("++dots(j-i)++")"
sr(a,s,b) = "("++s++")"

bl((i,j),s) = dots(j-i)++s
br(s,(i,j)) = s++dots(j-i)

il((i,j),s,(i’,j’)) = dots(j-i)++s++
dots(j’-i’)

ml(a,s,b) = "("++s++")"
nil((i,j)) = ""
cons(s,s’) = s++s’

ul(s) = s
h([s1, . . . , sr]) = [s1, . . . , sr]

Anscount = IN

count = (str, ..., h) where
str(s) = s

ss((i,j)) = 1
hl(a,(i,j),b) = 1

sr(a,s,b) = s
bl((i,j),s) = s
br(s,(i,j)) = s

il((i,j),s,(i’,j’)) = s
ml(a,s,b) = s

nil((i,j)) = 1
cons(s,s’) = s * s’

ul(s) = s
h([]) = []
h([s1, . . . , sr]) = [s1 + · · · + sr]

Figure 2.5: Four evaluation algebras for grammar wuchty98. Arguments a and b denote
bases, (i,j) represents the input subword wi+1 . . . wj , and s denotes answer values. Func-
tion dots(r) in algebra pretty yields a string of r dots (’.’)

.



26 CHAPTER 2. ALGEBRAIC DYNAMIC PROGRAMMING

and we will stick with base pair maximization as our optimization objective for the sake of
this presentation. Figure 2.5 shows four evaluation algebras that we will use with grammar
wuchty98. We illustrate their use via the following examples, where g(a,w) denotes the
application of grammar g and algebra a to input w. Table 2.1 summarizes all results for an
example sequence.

Application Result
wuchty98(enum,w) [Str (Ul (Bl (0,1) (Sr ’g’ (Hl ’g’ (3,10) ’c’)

’u’))), Str (Ul (Bl (0,2) (Sr ’g’ (Hl ’g’ (4,10) ’c’)

’u’))), Str (Cons (Bl (0,1) (Sr ’g’ (Hl ’g’ (3,7) ’c’)

’c’)) (Ul (Ss (9,12)))), Str (Cons (Bl (0,2) (Sr ’g’

(Hl ’g’ (4,7) ’c’) ’c’)) (Ul (Ss (9,12)))), Str (Ul

(Ss (0,12)))]

wuchty98(pretty,w) [".((.......))", "..((......))", ".((....))...",

"..((...))...", "............"]

wuchty98(bpmax,w) [2]

wuchty98(count,w) [5]

nussinov78(count,w) [9649270]

Table 2.1: Applications of grammars wuchty98 and nussinov78 with different individual
algebras on input w = cgggauaccacu.

wuchty98(enum,w): The enumeration algebra enum yields unevaluated terms. By conven-
tion, function symbols are capitalized in the output. Since the objective function is identity,
this call enumerates all candidates in the search space spawned by w. This is mainly useful
in program debugging, as it allows us to inspect the search space actually traversed by our
program.

wuchty98(pretty,w): The pretty-printing algebra pretty yields a dot-bracket string rep-
resentation of the same structures as the above.

wuchty98(bpmax,w): The base pair maximization algebra is bpmax, such that this call
yields the maximal number of base pairs that a structure for w can attain. Here the objective
function is maximization, and it can be easily shown to satisfy Bellman’s Principle. Similarly
for grammar nussinov78.

wuchty98(count,w): The counting algebra count has as its objective function summa-
tion, and Ecount(t) = 1 for all candidates t. Hence, summing over all candidate scores
gives the number of candidates. However, the evaluation functions are carefully writ-
ten such that they satisfy Bellman’s Principle. Thus, [length(wuchty98(enum,w))] ==

wuchty98(count,w)1 , where the right-hand side is polynomial to compute, while the
left-hand side typically is exponential due to the large number of answers returned by
wuchty98(enum,w).

nussinov78(count,w): This computes (using an analogous version of the counting algebra
not shown here) the number of structures considered by the Nussinov algorithm, which, in

1Technically, the result of wuchty98(count,w) is a singleton list, hence the [. . . ].



2.3. THE PRODUCT OPERATION ON EVALUATION ALGEBRAS 27

contrast to the above, is much larger than the size of the search space.

These examples show analyses achieved by individual algebras. We now turn to what can
be done by their combination.

2.3 The product operation on evaluation algebras

In this section we first introduce and discuss our definition of the product operation. From
there, we proceed with a series of examples demonstrating its usage.

2.3.1 Definition

We define the product operation as follows:

Definition 3 (Product operation on evaluation algebras) Let M and N be evaluation alge-
bras over Σ. Their product M***N is an evaluation algebra over Σ and has the functions

fM***N ((m1, n1)...(mk, nk)) =
(fM (m1, ..., mk), fN (n1, ..., nk)) for each f in Σ,

and the objective function

hM***N ([(m1, n1)...(mk, nk)]) = [(l, r)|
l ∈ L,

r ← hN ([r′|(l′, r′)← [(m1, n1)...(mk, nk)], l′ = l])],
where L = hM ([m1, ..., mk]).

We illustrate this mechanism on the application of the product operation on algebras bpmax
and count:

Ansbpmax *** count = IN× IN

bpmax *** count = (str, ..., h) where
str((m,n)) = (m,n)

ss((i,j)) = (0,1)
hl(a,(i,j),b) = (1,1)
sr(a,(m,n),b) = (m + 1,n)

bl((i,j),(m,n)) = (m,n)
br((m,n),(i,j)) = (m,n)

il((i,j),(m,n),(i’,j’)) = (m,n)
ml(a,(m,n),b) = (m + 1,n)

nil((i,j)) = (0,1)
cons((m,n),(m’,n’)) = (m + m’, n * n’)
ul((m,n)) = (m,n)

h([(m1, n1)...(mk, nk)]) =
[(l, r)|l ∈ L,
r ← [

P

[r′|(l′, r′)← [(m1, n1)...(mk, nk)], l′ = l]]],
where L = [ max

1≤i≤k
mi]



28 CHAPTER 2. ALGEBRAIC DYNAMIC PROGRAMMING

Here, each function calculates a pair of two result values. The first is the result of algebra
bpmax, the second is the result of algebra count. The interesting part is the objective
function h. It receives the list of pairs as input, with each pair consisting of the candidate’s
scores for the first and for the second algebra. In the first step the objective function of
algebra bpmax (max) is applied to the list of the first pair elements. The result is stored in
L. Then, for each element2 of L, a new intermediate list is constructed that consists of all
corresponding right pair elements of the input list. This intermediate list is then applied to
the objective function of the second algebra (here: summation). Finally, the result of h is
constructed by combination of all elements from L with their corresponding result for the
second algebra stored in r. This computes the optimal number of base pairs, together with
the number of candidate structures that achieve it.

Above, ∈ denotes set membership and hence ignores duplicates. In contrast, ← denotes list
membership and respects duplicates. Implementing set membership may require some extra
filtering effort, but when the objective function hM , which computes L, does not produce
duplicates anyway, it comes for free.

One should not rely on intuition alone for understanding what M***N actually computes.
For any tree grammar G and product algebra M***N , their combined meaning is well
defined by Definition 1, and the view that a complete list of all candidates is determined
first, with hM***N applied only once in the end, is very helpful for understanding. But does
G(M***N, w) actually do what it means? The implementation works correctly if and only
if Bellman’s Principle is satisfied by M***N , which is not implied when it holds for M and
N individually! Hence, use of product algebras is subject to the following

Proof obligation: Prove that M***N satisfies Bellman’s Principle (Definition 2).

Alas, we have traded the need of writing and debugging code for a proof obligation. Fortu-
nately, there is a theorem that covers many important cases3:

Theorem 1 (1) For any algebras M and N , and answer list x, (idM ∗ ∗ ∗ idN )(x) is a
permutation of x.

(2) If hM and hN minimize with respect to some order relations ≤M and ≤N , then hM***N

minimizes with respect to the lexicographic ordering (≤M ,≤N).

Proof. (1) According to Definition 3, the elements of x are merely re-grouped according to
their first component. For this to hold, it is essential that L is treated as a set. (2) follows
directly from Definition 3. �

2In this example, L holds only one element, namely the maximum base pair score of the input list.
3In [49], the theorem erroneously contains also the following statement: If both M and N minimize as

above and both satisfy Bellman’s Principle, then so does M***N . This property would be nice to have, but
there exist counterexamples where it does not hold.



2.3. THE PRODUCT OPERATION ON EVALUATION ALGEBRAS 29

In the above proof, strict monotonicity is required only if we ask for multiple optimal, or
for the k best solutions rather than a single, optimal one [33].

Theorem 1 (1) justifies our peculiar treatment of the list L as a set. It states that no elements
of the search space are lost or get duplicated by the combination of two algebras. Theorem 1
(2,3) say that *** behaves as expected in the case of optimizing evaluation algebras. This
is very useful, but not too surprising. A surprising variety of applications arises when ***

is used with algebras that do not do optimization, like enum, count, and pretty.

The proof obligation is met for all the applications studied below. A case where the proof
fails is, for example, wuchty98(count***count,w), which consequently delivers no mean-
ingful result.

2.3.2 Implementing the product operation

The algebraic style of dynamic programming can be practiced within any decent program-
ming language. It is mainly a discipline of structuring our dynamic programming algorithms,
the perfect separation of problem decomposition and scoring being the main achievement.
When using the ASCII notation for tree grammars proposed in [17], the grammars can be
compiled into executable code. Otherwise, one has to derive the explicit recurrences and
implement the corresponding yield parser. Care must be taken to keep the implementation
of the recurrences independent of the result data type, such that they can be run with
different algebras, including arbitrary products.

All this given, the extra effort for using product algebras is small. It amounts to imple-
menting the defining equations for the functions of M***N generically, i.e. for arbitrary
evaluation algebras M and N over the common signature Σ. In a language which supports
functions embedded in data structures, this is one line per evaluation function, witnessed
by our implementation in Haskell (available for download). In other languages, abstract
classes (Java) or templates (C++) can be used. It is essential to provide a generic product
implementation. Otherwise, each new algebra combination must be hand-coded, which is
not difficult to do, but tedious and error-prone, and hence necessitates debugging. A generic
product, once tested, guarantees absence of errors for all combinations.

2.3.3 Efficiency discussion

Before we turn to the uses of ***, a word on computational efficiency seems appropriate.
Our approach requires to structure programs in a certain way. This induces a small (constant
factor) overhead in space and time. For example, we must generically return a list of results,
even with analyses that return only a single optimal value. Normally, each evaluation
function is in O(1), and when h returns a single answer, asymptotic efficiency is solely
determined by the tree grammar [17]. This asymptotic efficiency remains unaffected when
we use a product algebra. Each table entry now holds a pair of answers, each of size O(1).



30 CHAPTER 2. ALGEBRAIC DYNAMIC PROGRAMMING

Things change when we employ objective functions that produce multiple results, as the
size of the desired output can become exponential in n, and then it dominates the overall
computational effort. For example, the optimal base pair score may be associated with a
large number of co-optimal candidates, especially when the grammar is ambiguous. Thus,
if using *** makes our programs slower (asymptotically), it is not because of an intrinsic
effect of the product operation, but because we decide to do more costly analyses by looking
deeper into the search space.

The only exception to this rule is the situation where objective function hM produces du-
plicate values, which must be filtered out, as described with Definition 3. In this case, a
non-constant factor proportional to the length of answer lists is incurred.

The concrete effect of using product algebras on CPU time and space is difficult to measure,
as the product algebra runs a more sophisticated analysis than either single one. For an
estimation, we measure the (otherwise meaningless) use of the same algebra twice. We
compute wuchty98(bpmax,w) and compare to wuchty98(bpmax***bpmax,w). The outcome
is shown in Table 2.2. For input lengths from 200 to 1600 bases, the product algebra uses
9.57% to 21.34% more space and is 18.97% to 29.46% slower than the single algebra.

|w| wuchty98(bpmax,w) wuchty98(bpmax***bpmax,w) %
time (sec) 200 0.58 0.69 + 18.97
space (MB) 200 1.88 2.06 + 9.57
time (sec) 400 4.65 6.02 + 29.46
space (MB) 400 4.60 5.37 + 16.74
time (sec) 800 52.04 65.54 + 25.94
space (MB) 800 15.61 18.77 + 20.24
time (sec) 1600 590.72 725.03 + 22.74
space (MB) 1600 59.85 72.62 + 21.34

Table 2.2: Measuring time and space requirements of the product operation. All results
are for a C implementation of wuchty98, running on a 900 MHz Ultra Sparc 3 CPU under
Sun Solaris 10. The space requirements were measured using a simple wrapper function for
malloc, that counts the number of allocated bytes. Times were measured with gnu time.

2.3.4 Applications of product algebras

We now turn to applications of product algebras. Table 2.3 summarizes all results of the
analyses discussed in the sequel, for a fixed example RNA sequence.

Application 1: Backtracing and co-optimal solutions

Often, we want not only the optimal answer value, but also a candidate which achieves the
optimum. We may ask if there are several optimal candidates. If so, we may want to see
them all, maybe even including some near-optimal candidates. The traditional technique



2.3. THE PRODUCT OPERATION ON EVALUATION ALGEBRAS 31

Application Result
wuchty98(bpmax***count,w) [(2,4)]

wuchty98(bpmax***pretty,w) [(2,".((.......))"), (2,"..((......))"),

(2,".((....))..."), (2,"..((...))...")]

wuchty98(bpmax***enum,w) [(2,Str (Ul (Bl (0,1) (Sr ’g’ (Hl ’g’ (3,10) ’c’)

’u’)))),(2,Str (Ul (Bl (0,2) (Sr ’g’ (Hl ’g’ (4,10)

’c’) ’u’)))),(2,Str (Cons (Bl (0,1) (Sr ’g’ (Hl ’g’

(3,7) ’c’) ’c’)) (Ul (Ss (9,12))))),(2,Str (Cons

(Bl (0,2) (Sr ’g’ (Hl ’g’ (4,7) ’c’) ’c’)) (Ul (Ss

(9,12)))))]

wuchty98(bpmax***(enum***pretty),w) [(2,(Str (Ul (Bl (0,1) (Sr ’g’ (Hl ’g’ (3,10) ’c’)

’u’))), ".((.......))")), (2,(Str (Ul (Bl (0,2) (Sr

’g’ (Hl ’g’ (4,10) ’c’) ’u’))), "..((......))")),

(2,(Str (Cons (Bl (0,1) (Sr ’g’ (Hl ’g’ (3,7) ’c’)

’c’)) (Ul (Ss (9,12)))), ".((....))...")), (2,(Str

(Cons (Bl (0,2) (Sr ’g’ (Hl ’g’ (4,7) ’c’) ’c’)) (Ul

(Ss (9,12)))), "..((...))..."))]

wuchty98(shape***count,w) [(" [ ]",2), (" [ ] ",2), (" ",1)]

wuchty98(bpmax(5)***shape,w) [(2," [ ]"), (2," [ ] "), (0," ")]

wuchty98(bpmax(5)***(shape***count),w) [(2,(" [ ]",2)), (2,(" [ ] ",2)), (0,(" ",1))]

wuchty98(shape***bpmax,w) [(" [ ]",2), (" [ ] ",2), (" ",0)]

wuchty98(bpmax***pretty’,w) [(2,".((....))...")]

wuchty98(pretty***count,w) [(".((.......))",1), ("..((......))",1),

(".((....))...",1), ("..((...))...",1),

("............",1)]

Table 2.3: Example applications of product algebras with grammar wuchty98 on input w =

cgggauaccacu.



32 CHAPTER 2. ALGEBRAIC DYNAMIC PROGRAMMING

is to store a table of intermediate answers and backtrace through the optimizing decisions
made [21]. This backtracing can become quite intricate to program if we ask for more than
one candidate. We can answer these questions without additional programming efforts using
products:

wuchty98(bpmax***count,w) computes the optimal number of base pairs, together with
the number of candidate structures that achieve it.

wuchty98(bpmax***enum,w) computes the optimal number of base pairs, together with all
structures for w that achieve this maximum, in their representation as terms from TΣ.

wuchty98(bpmax***pretty,w) does the same as the previous call, producing the string
representation of structures.

wuchty98(bpmax***(enum***pretty),w) does both of the above.

To verify all these statements, apply Definition 3, or visit the ADP web site and run your
own examples.

It is a nontrivial consequence of Definition 3 that the above product algebras in fact give
all co-optimal solutions. Should only a single one be desired, we would use enum or pretty
with a modified objective function h that retains only one element.

Note that our substitution of backtracing by a “forward” computation does not affect asymp-
totic runtime efficiency. With bpmax***enum, for example, the algebra stores in each table
entry the optimal base pair count, together with the top node of the optimal candidate(s)
and pointers to its immediate substructures, which reside in other table entries. Hence,
even if there should be an exponential number of co-optimal answers, they are represented
in polynomial space, because subtrees are shared. Should the user decide to have them all
printed, exponential effort is incurred, just as with a backtracing implementation.

Application 2: Holistic search space analysis

Abstract shapes were recently proposed in [20] as a means to obtain a holistic view of
an RNA molecule’s folding space, avoiding the explicit enumeration of a large number of
structures. Bypassing all relevant mathematics, let us just say that an RNA shape is an
object that captures structural features, like the nesting pattern of stacking regions, but not
their size. We visualize shapes by strings alike dot-bracket notation, such as [ [ ]], where
denotes an unpaired region and [ together with the matching ] denotes a complete helix

of arbitrary length. This is achieved by the following shape algebra:4

4The function shMerge appends two strings and merges adjacent characters for unpaired regions ( ). The
function nub eliminates duplicates from its input list.



2.3. THE PRODUCT OPERATION ON EVALUATION ALGEBRAS 33

Ansshape = shape strings

shape = (str, ..., h) where

str(s) = s

ss((i,j)) = " "

hl(a,(i,j),b) = "[ ]"

sr(a,s,b) = s

bl((i,j),s) = " "++s

br(s,(i,j)) = s++" "

il((i,j),s,(i’,j’)) = " "++s++" "

ml(a,s,b) = "["++s++"]"

nil((i,j)) = ""

cons(s,s’) = shMerge(s,s’)

ul(s) = s

h([s1, . . . , sr]) = nub[s1, . . . , sr]

Together with a creative use of ***, the shape algebra allows us to analyze the number of
possible shapes, the size of their membership, and the (near-) optimality of members, and
so on. Let bpmax(k) be bpmax with an objective function that retains the best k answers
(without duplicates).

wuchty98(shape***count,w) computes all the shapes in the search space spawned by w,
and the number of structures that map onto each shape.

wuchty98(bpmax(k)***shape,w) computes the best k base pair scores, together with their
candidates’ shapes.

wuchty98(bpmax(k)***(shape***count),w)

computes base pairs and shapes as above, plus the number of structures that achieve this
number of base pairs in the given shape.

wuchty98(shape***bpmax,w) computes for each shape the maximum number of base pairs
among all structures of this shape.

Application 3: Optimization under lexicographic orderings

Theorem 1 is useful in practice as one can test different objectives independently and then
combine them in one operation. A simple case of using two orderings would be the following:
Assume we have a case with a large number of co-optimal solutions. Let pretty’ be pretty
with h = min.

wuchty98(bpmax***pretty’,w) computes among several optimal structures the one which
comes alphabetically first according to its string representation.5

5Of course, there are more meaningful uses of a primary and a secondary optimization objective. For
lack of space, we refrain from introducing another optimizing algebra here.



34 CHAPTER 2. ALGEBRAIC DYNAMIC PROGRAMMING

Application 4: Testing ambiguity

Dynamic programming algorithms can often be written in a simpler way if we do not care
whether the same solution is considered many times during the optimization. This does not
affect the overall optimum. A dynamic programming algorithm is then called redundant
or ambiguous. In such a case, the computation of a list of near-optimal solutions is cum-
bersome, as it contains duplicates whose number often has an exponential growth pattern.
Also, search space statistics become problematic – for example, the counting algebra speaks
about the algorithm rather than the problem space, as it counts evaluated, but not nec-
essarily distinct solutions. Tree grammars with a suitable probabilistic evaluation algebra
implement stochastic context free grammars (SCFGs) [8]. The frequently used statistical
scoring schemes, when trying to find the answer of maximal probability (the Viterbi algo-
rithm, cf. [8]), are fooled by the presence of redundant solutions. In principle, it is clear
how to control ambiguity [14]. One needs to show unambiguity of the tree grammar6 in the
language theoretic sense, and the existence of an injective mapping from TΣ to a canonical
model of the search space. However, the proofs involved are not trivial. Rather, one would
like to implement a check for ambiguity that is applicable for any given tree grammar, but
this may be difficult or even impossible, as the problem is closely related to ambiguity of
context free languages, which is known to be formally undecidable.

Recently, Dowell and Eddy showed that ambiguity really matters in practice for SCFG de-
sign, and they suggest a procedure for ambiguity testing [7]. This test uses a combination of
Viterbi and Inside algorithms to check whether the (putatively optimal) candidate returned
by Viterbi has an alternative derivation. A more complete test is the following, and due to
the use of ***, it requires no implementation effort:

The required homomorphism from the search space to the canonical model may be coded
as another evaluation algebra. In fact, if we choose the dot-bracket string representation as
the canonical model, algebra pretty does exactly this. We can test for ambiguity by testing
injectivity of pretty – by calling wuchty98(pretty***count,w) on a number of inputs w.
If any count larger than 1 shows up in the results, we have proved ambiguity. This test is
strictly stronger than the one by Dowell and Eddy, which detects ambiguity only if it occurs
with the (sampled) “near-optimal” predictions. This and other test methods are studied in
detail in [41].

Limitations of the product operation

The above applications demonstrate the considerable versatility of the algebra product. In
particular, since a product algebra is an algebra itself, we can work with algebra triples,
quadruples, and so on. All of these will be combined in the same fashion, and here we reach
the limits of the product operation.

6Not the associated string grammar – it is always ambiguous, else we would not have an optimization
problem.



2.4. CONCLUSION 35

The given definition of *** is not the only way needed to combine two algebras. In abstract
shape analysis [20], we use three algebras mfe (computing minimal free energy), shape and
pretty. A shape representative structure is the structure of minimal free energy within
the shape. Similarly to the above, wuchty98(shape***(mfe***pretty),w) computes the
representatives of all shapes. However, computing only the k best shape representatives re-
quires minimization within and across shapes, which neither mfe***shape nor shape***mfe
can achieve. Hence, a hand-coded combination of the three algebras is necessary for this
particular analysis.

2.4 Conclusion

We hope to have demonstrated that the evaluation algebra product as introduced here
adds a significant amount of flexibility to dynamic programming. We have shown how
ten meaningful analyses with quite diverse objectives can be obtained by using different
products of a few simple algebras. The techniques we have shown here pertain not just to
RNA folding problems, but to all dynamic programming algorithms that can be formulated
in the algebraic style.

The benefits from using a particular coding discipline do not come for free. There is some
learning effort required to adapt to a systematic approach and to abandon traditional coding
habits. After that, the discipline pays back by making programmers more productive. Yet,
the pay-off is hard to quantify. We therefore conclude with a subjective summary of our
experience as bioinformatics toolsmiths.

After training a generation of students on the concepts presented here, we have enjoyed a
boost in programming productivity. Four bioinformatics tools have been developed using
this approach – pknotsRG [39], RNAshapes [20], RNAhybrid [42] and RNAcast [40]. The
“largest” example is the pseudoknot folding grammar, which uses 47 nonterminal symbols
and a 140-fold case distinction. The techniques described here have helped to master such
complexity in several ways:

• The abstract formulation of dynamic programming recurrences in the form of gram-
mars makes it easy to communicate and refine algorithmic ideas.

• Writing non-ambiguous grammars for optimization problems allows us to use the same
algorithm for mathematical analysis of the search space.

• Ambiguity checking ensures us that such analyses are correct, that probabilistic anal-
yses are not fooled by redundant recurrences, and that near-optimal solutions when
reported do not contain duplicates.

• enum algebras allow for algorithm introspection – we can obtain a protocol of all
solution candidates the program has seen, a quite effective program validation aid.



36 CHAPTER 2. ALGEBRAIC DYNAMIC PROGRAMMING

• Using pretty and enum algebras in products frees us from the tedious programming
of backtracing routines.

• The use of the product operation allows us to create new analyses essentially with
three key strokes – and a proof obligation that must be met.

This has created a good testbed for the development of new algorithmic ideas, which can
immediately be put to practice.

2.5 Algebraic Dynamic Programming as a domain spe-

cific language

This section is taken from [17].

ADP has been designed as a domain specific language embedded in Haskell [37]. An algo-
rithm written in ADP notation can be directly executed as a Haskell program. Of course,
this requires that the functions of the evaluation algebra are coded in Haskell. A smooth
embedding is achieved by adapting the technique of parser combinators [26], which literally
turn the grammar into a parser. Hutton’s technique applies to context free grammars and
string parsing. We need to introduce suitable combinator definitions for yield parsing, and
add tabulation.

Generally, a parser is a function that, given a subword of the input, returns a list of all its
parses:

> type Subword = (Int,Int)

> type Parser b = Subword -> [b]

2.5.1 Lexical parsers

The lexical parser achar recognizes any single character. Parser astring recognizes a
(possibly empty) subword and parser astringp a nonempty subword. Specific characters
or strings are recognized by char and string. Parser empty recognizes the empty subword
and parser loc provides the current location in the input sequence.

> empty :: Parser ()

> empty (i,j) = [() | i == j]

> achar :: Parser Char

> achar (i,j) = [z!j | i+1 == j]

> astring :: Parser Subword

> astring (i,j) = [(i,j) | i <= j]



2.5. ALGEBRAIC DYNAMIC PROGRAMMING AS A DOMAIN SPECIFIC LANGUAGE37

> astringp :: Parser Subword

> astringp (i,j) = [(i,j) | i < j]

> char :: Char -> Parser Char

> char c (i,j) = [c | i+1 == j, z!j == c]

> string :: String -> Parser Subword

> string s (i,j) = [(i,j)| and [z!(i+k) == s!!(k-1) | k <-[1..(j-i)]]

> loc :: Parser Int

> loc (i,j) = [i | i == j]

The parsers base and region used in Section 2.2.3 are synonyms for the parsers achar and
astring.

2.5.2 Nonterminal parsers

The nonterminal symbols in the grammar are interpreted as parsers, with the productions
serving as their mutually recursive definitions. Each righthand side is an expression that
combines parsers using the parser combinators.

2.5.3 Parser combinators

The operators introduced in the ADP notation are now defined as parser combinators: |||
concatenates result lists of alternative parses, <<< grabs the results of subsequent parsers
connected via ~~~ and successively “pipes” them into the algebra function on its left. Com-
binator ... applies the objective function to a list of answers.

> infixr 6 |||

> (|||) :: Parser b -> Parser b -> Parser b

> (|||) r q (i,j) = r (i,j) ++ q (i,j)

> infix 8 <<<

> (<<<) :: (b -> c) -> Parser b -> Parser c

> (<<<) f q (i,j) = map f (q (i,j))

> infixl 7 ~~~

> (~~~) :: Parser (b -> c) -> Parser b -> Parser c

> (~~~) r q (i,j) = [f y | k <- [i..j], f <- r (i,k), y <- q (k,j)]

> infix 5 ...

> (...) :: Parser b -> ([b] -> [b]) -> Parser b

> (...) r h (i,j) = h (r (i,j))



38 CHAPTER 2. ALGEBRAIC DYNAMIC PROGRAMMING

Note that the operator priorities are defined such that an expression f <<< a ~~~ b ~~~

c is read as ((f <<< a) ~~~ b) ~~~ c. This makes use of curried functions: the results of
parser f <<< a are functions – i. e. calls to f with (only) the first argument bound.

The operational meaning of a with-clause can be defined by turning with into a combinator,
this time combining a parser with a filter. Finally, the keyword axiom of the grammar is
interpreted as a function that returns all parses for the specified nonterminal symbol and
the complete input.

> type Filter = Subword -> Bool

> with :: Parser b -> Filter -> Parser b

> with q c (i,j) = if c (i,j) then q (i,j) else []

> axiom :: Parser b -> [b]

> axiom ax = ax (0,l)

When a parser is called with the enumeration algebra – i.e. the functions applied are actually
tree constructors, and the objective function is the identity function – then it behaves like a
proper yield parser and generates a list of trees according to Section 2.2.2. However, called
with some other evaluation algebra, it computes any desired type of answer.

2.5.4 Tabulation

Adding tabulation is merely a change of data type, replacing a recursive function by a
recursively defined table. Now we need a general scheme for this purpose: The function
table records the results of a parser p for all subwords of an input of size n, and returns as
its result a function that does lookup in this table. Note the essential invariance (table n

f)!(i,j) = f(i,j). Therefore, table n p is a tabulated parser, that can be used in place
of parser p. In contrast to the latter, it does not compute the results for the same subword
(i,j) repeatedly – here we enjoy the blessings of lazy evaluation and avoid exponential
explosion.

The keyword tabulated is now defined as table bound to the global variable l, the length
of the input.

> table :: Int -> Parser b -> Parser b

> table n p = (!) (array ((0,0),(n,n))

> [((i,j), p (i,j)) | i<- [0..n], j<- [i..n]])

> tabulated = table l

2.5.5 Removing futile computations

Consider the production a = f <<< a ~~~ char. Our definition of the ~~~ combinator
splits subword (i, j) in all possible ways, including empty subwords on either side. Obviously,



2.6. TOOLS FOR ADP DEVELOPMENT 39

achar, which recognizes a single character, has a fixed yield size of 1, leaving the subword
(i, j − 1) for the yield of nonterminal symbol a. In this case, iteration over all splits of (i, j)
into (i, k) and (k, j) is mathematically correct, but a futile effort. The only successful split
can be (i, j− 1) and (j− 1, j). What is worse, since the production is left-recursive, the last
split considered without need is (i, j) and (j, j), which leads to infinite recursion.

Both situations are avoided by using specializations of the ~~~ combinator that are aware
of bounded yield sizes and avoid unnecessary splits. For the case of splitting off a single
character, we use -~~ and ~~-, for a nonempty sequence on both sides we use +~+, while the
fully general case of an arbitrary, but known yield size limit is treated by the ~~ combinator.

> infixl 7 ~~,-~~ ,~~-,+~+

> (-~~) q r (i,j) = [x y | i<j, x <- q (i,i+1), y <- r (i+1,j)]

> (~~-) q r (i,j) = [x y | i<j, x <- q (i,j-1), y <- r (j-1,j)]

> (+~+) q r (i,j) = [x y | k <- [(i+1)..(j-1)], x <- q (i,k), y <- r (k,j)]

> (~~) :: (Int,Int) -> (Int,Int)

> -> Parser (b -> c) -> Parser b -> Parser c

> (~~) (l,u) (l’,u’) r q (i,j)

> = [x y | k <- [max (i+l) (j-u’) .. min (i+u) (j-l’)],

> x <- r (i,k), y <- q (k,j)]

These combinators are used in asymptotic efficiency tuning via width reduction as described
in [16]. Using these special cases, our nussinov grammar can be written in the form

> nussinov78 alg = axiom s where

> (nil,left,right,pair,split,h) = alg

> s = tabulated (

> nil <<< empty |||

> right <<< s ~~- achar |||

> (pair <<< achar -~~ s ~~- achar)

> ‘with‘ basepairing |||

> split <<< s +~+ s ... h)

which now, as a functional program, has the appropriate efficiency of O(n3).

2.6 Tools for ADP development

In the course of this work a number of useful tools for ADP programmers were devel-
oped: Combinator optimization, automatic table design, and a program template generator.
All tools are integrated in the ADP compiler, and can also be used on the ADP website
(http://bibiserv.techfak.uni-bielefeld.de/adp/).



40 CHAPTER 2. ALGEBRAIC DYNAMIC PROGRAMMING

2.6.1 Combinator optimization

In Section 2.5.5 we have seen several variants of the ~~~ combinator. The variants are
necessary to avoid needless computations. For example, in the production s = right <<<

s ~~~ achar it is not necessary to iterate over all possible splits between s and achar.
This fruitless computations can be avoided by using the combinator ~~- instead of ~~~.
In the production s = right <<< s ~~- achar then only one split between s(i,j-1) and
achar(j-1,j) is calculated.

For simple examples like this the choice of a suitable combinator is very easy, but for larger
examples this can become quite difficult. This manual combinator optimization can lead to
subscript errors that we wanted to circumvent with the use of ADP. The ADP compiler offers
a combinator optimization mode that makes the manual choice of combinators superfluous.
As input, the ADP compiler expects an ADP program where only the most general ~~~
combinator is used. As output the ADP compiler transforms the ~~~ combinators to their
specialized variants. The implementation of this operation is described in Section 4.1.3.

2.6.2 Table design

As we have seen in Section 2.5.4, tabulation is necessary to avoid exponential explosion. For
small programs with two or three nonterminals it is most often needed to tabulate every
nonterminal. For larger grammars the task of tabulation is more difficult. Of course, we can
simply tabulate every nonterminal of the grammar. But this is most often unnecessary and a
waste of memory. In general, the table design problem is defined as follows: Find the minimal
number of tables, under which the program has an asymptotically optimal runtime. This
problem is NP-complete (Section 4.5). We have implemented both a brute-force approach
and an approximate approach in the ADP compiler. The brute-force approach is suitable
for grammars up to 40 nonterminals. For larger grammars, the approximate approach can
be used.

Another task of table design is the optimization of table dimensions. In most cases quadratic
tables are needed, but there exist cases where a linear table suffices. These cases are auto-
matically identified by the ADP compiler. The compiler offers an optimization mode where
a program completely without table annotations is automatically transformed to a program
with optimal table design.

2.6.3 Template generator

A complete and executable ADP program consists of three types of components.

1. Problem-specific parts – Σ, G and E , where E is the algebra that describes our desired
analysis of the search space.



2.6. TOOLS FOR ADP DEVELOPMENT 41

2. Several standard components – evaluation algebras count and enum, and other source
code that depends on the underlying Σ.

3. Some prologue code that relates to the embedding of the ADP program in the host
language, such as the implementation of yield parsing.

The code that needs to be written for type 2 and type 3 components is not difficult, but
often amounts to more than half of the overall code. Errors introduced here may be difficult
to spot. To help the user concentrate on the algorithmically interesting aspects of his work,
we have automated the production of type 2 and type 3 components.

The design process with ADP starts with the specification of the signature Σ. At this point
our template generator can be invoked to produce code for the following components:

• a polymorphic type declaration for Σ-algebras,

• the counting and the enumeration Σ-algebra,

• a data type definition for the candidate trees,

• a toy grammar that generates TΣ,

• the necessary prologue code to import predefined functions for yield parsing.

At this point, the user has an executable ADP program, useful for minor plausibility tests
like computing combinatorics of TΣ with the counting algebra. To this program, the user
may add additional algebras and grammars in arbitrary order and step by step. Declaring
all algebras to be of the pre-generated type will catch a significant fraction of errors such as
forgetting a function, omitting an argument, or providing one of the wrong type.

The following example shows the outcome of calling the template generator with the sig-
nature, which is reproduced as the five lines of code under the heading “The signature:”.
It also shows that the generated code is readable enough to serve as a starting point for
extending the program.

Haskell header:

> import ADPCombinators

> import Array

> import List

The signature:

> data Alignment

> = Nil Char

> | D Char Alignment

> | I Alignment Char

> | R Char Alignment Char



42 CHAPTER 2. ALGEBRAIC DYNAMIC PROGRAMMING

> deriving (Eq, Show)

Algebra type:

> type Algebra alphabet answer = (

> alphabet -> answer,

> alphabet -> answer -> answer,

> answer -> alphabet -> answer,

> alphabet -> answer -> alphabet -> answer,

> [answer] -> [answer]

> )

Enumeration algebra:

> enum :: Algebra Char Alignment

> enum = (nil, d, i, r, h) where

> nil = Nil

> d = D

> i = I

> r = R

> h = id

Counting algebra:

> count :: Algebra Char Int

> count = (nil, d, i, r, h) where

> nil a = 1

> d a b = b

> i a b = a

> r a b c = b

> h [] = []

> h xs = [sum xs]

Algebra product operation:

> (***) :: Eq answer1 =>

> (Algebra Char answer1) ->

> (Algebra Char answer2) ->

> Algebra Char (answer1,answer2)

> infix ***

> alg1 *** alg2 = (nil, d, i, r, h) where

> (nil1, d1, i1, r1, h1) = alg1

> (nil2, d2, i2, r2, h2) = alg2

>

> nil a = (nil1 a, nil2 a)

> d a (b1,b2) = (d1 a b1, d2 a b2)

> i (a1,a2) b = (i1 a1 b, i2 a2 b)

> r a (b1,b2) c = (r1 a b1 c, r2 a b2 c)

>

> h xs = [(x1,x2)| x1 <- nub $ h1 [ y1 | (y1,y2) <- xs],

> x2 <- h2 [ y2 | (y1,y2) <- xs, y1 == x1]]

The yield grammar:



2.6. TOOLS FOR ADP DEVELOPMENT 43

> grammar alg f = axiom alignment where

> (nil, d, i, r, h) = alg

>

> alignment = tabulated(

> nil <<< achar |||

> d <<< achar -~~ alignment |||

> i <<< alignment ~~- achar |||

> r <<< achar -~~ alignment ~~- achar ... h)

Bind input:

> z = mk f

> (_,n) = bounds z

> achar = achar’ z

> axiom = axiom’ n

> tabulated = table n



44 CHAPTER 2. ALGEBRAIC DYNAMIC PROGRAMMING



Chapter 3

Language definition

ADP is a flexible approach to describe dynamic programming algorithms. Particularly, in
the embedded approach (Section 2.5) it is tempting to add new language constructs to an
algorithm or even to program parts simply in Haskell. For the compilation of ADP programs
this situation is difficult as long as the ADP language is not clearly defined. In this chapter
we will therefore define the ADP language supported by the compiler. In Section 3.5 we
give an overview of the tasks needed to compile this language into imperative target code.

3.1 Syntax

We describe the abstract syntax of the ADP language by the following abstract data types.
A grammar has a name, an axiom, and a set of productions:

data Grammar = Grammar Ident Axiom [Production ]
type Ident = String
type Axiom = String

A production has a name, it can be tabulated or not, and has a corresponding definition
(Unit):

data Production = Production Ident Tabulation Unit
type Tabulation = Bool

data Unit = Terminal Ident
| Nonterminal Ident
| Unit : ˜˜˜ Unit

45



46 CHAPTER 3. LANGUAGE DEFINITION

| (Unit ,YSize) : ˜˜ (Unit ,YSize)
| Ident :<<< Unit
| Unit ‘With ‘ Ident
| Unit : ||| Unit
| Unit : ... Ident

type YSize = (YSNum,YSNum)
data YSNum = YSNum Int

| Infinite

The following functions map the abstract syntax defined by the data types Grammar ,
Production and Unit to its concrete syntax for the embedded domain specific language:

ppGrammar (Grammar ident axiom ps) = ident ++ " = axiom " ++ axiom++
" where\n"++ concatMap ppProduction ps

ppProduction (Production ident tab unit) = ident ++ " = " ++ ppTab tab ++ ppUnit unit
where ppTab True = "tabulated"

ppTab False = ""

ppUnit (Terminal ident) = ident
ppUnit (Nonterminal ident) = ident
ppUnit (p : ˜˜˜ q) = ppUnit p ++ " ~~~ " ++ ppUnit q
ppUnit ((p, ys p) : ˜˜ (q , ys q)) = ppUnit p ++ " ~~ " ++ ppUnit q
ppUnit (f :<<< p) = f ++ " <<< " ++ ppUnit p
ppUnit (p ‘With ‘ f ) = ppUnit p ++ " ‘with‘ " ++ f
ppUnit (p : ||| q) = ppUnit p ++ " ||| " ++ ppUnit q
ppUnit (p : ... h) = ppUnit p ++ " ... " ++ h

3.2 Terminal parsers

The ADP language offers a set of terminal parsers suitable for sequential input. This set
contains the following parsers:

• empty. the empty word: L(empty) = {ε}.

• achar. an arbitrary character: L(achar) = A.

• astring. an arbitrary sequence: L(astring) = A∗.

• astringp. an arbitrary non-empty sequence: L(astringp) = A+.



3.3. FILTER 47

• char c. a concrete character: L(char c) = {c}, c ∈ A.

• string s. a concrete sequence: L(string s) = {s}, s ∈ A∗.

• loc: the current position in the input: L(loc) = IN.

3.3 Filter

To require results of certain lengths, the ADP language offers the following filters: minsize

with (minsize l)(x) = |x| ≥ l, maxsize with (maxsize u)(x) = |x| ≤ u and size with
(size l u)(x) = l ≤ |x| ≤ u.

As filter for checking parts of the input, the filter pairing with (pairing f)(x1...xn) =
f(x1, xn) can be used. Furthermore it is possible to use arbitrary other filters, that need to
be implemented in the target language by hand.

3.4 Algebra functions

As algebra functions, arbitrary functions can be used. The compiler then tries to compile
these functions directly into the target language. For example, simple arithmetic expressions
can be automatically processed. Functions unknown to the compiler are compiled to exter-
nal function calls in the target language. As evaluation functions, the functions maximum,
minimum and sum are directly supported. In general, the algebra functions can have the
following form:

data Exp = ExpFA Ident [Exp ] -- function application
| ExpVar String
| ExpNum Int
| ExpChar Char
| ExpString String
| ExpTupel [Exp]
| ExpIF Exp Exp Exp
| ExpBinOp Exp BinOp Exp

data BinOp = Add | Min | Mul | Div | Pow
| Lt | Gt | Leq | Geq | Eq | Neq
| And | Or | Append | Cons



48 CHAPTER 3. LANGUAGE DEFINITION

3.5 Compilation challenges

This section is taken from [19].

In [17], we gave translation rules for the generation of matrix recurrences from tree gram-
mars. This scheme serves as a translational semantics for ADP, but produces no useful
target code.

In the following, we shall report on some challenges in the project of migrating the domain
specific ADP language from its host language to a directly compiled implementation. The
solutions to these challenges are described in detail in Chapter 4. As a running example we
use the following program for a local alignment with affine gap costs:

sw_alignments z = axiom skipR where

skipR = skip_right <<< skipR ~~~ achar |||

skipL ... h

skipL = skip_left <<< achar ~~~ skipL |||

alignment ... h

alignment = r <<< achar ~~~ alignment ~~~ achar |||

d <<< achar ~~~ xDel |||

i <<< xIns ~~~ achar |||

nil <<< astring ... h

xDel = alignment |||

dx <<< achar ~~~ xDel ... h

xIns = alignment |||

ix <<< xIns ~~~ achar ... h

The central part of this grammar is production alignment. Each edit operation is expressed
as one alternative of this production. It can either be a replacement of two characters, a
deletion of a character from the first sequence, a deletion of a character from the second
sequence (i.e. an insertion in the first), or an arbitrary sequence in the middle part, which
terminates the alignment.

Based on the observation that for processing of biological sequence data it is often more
realistic to assume mutations of longer sequence parts instead of only a single molecule, the
local similarity algorithm uses a model of affine gap costs. For this purpose, it distinguishes
between the first deletion or insertion and subsequent ones. This is modeled by the two
nonterminals xDel and xIns. The two additional nonterminals, skipR and skipL, are used
to express that an arbitrary number of characters can be skipped before the beginning of
the local alignment.



3.5. COMPILATION CHALLENGES 49

The following shows algebra affine in ADP notation:

affine :: SmithWaterman_Algebra Char Int

affine = (nil, d, i, r, dx, ix,

skip_right, skip_left, h) where

nil _ = 0

d x s = s - 16

i s y = s - 16

r a s b = if a==b then s+4 else s-3

dx x s = s - 1

ix s y = s - 1

skip_right a b = a

skip_left a b = b

h l = [maximum l]

We score similar characters with a positive score (4) and assign penalties for mismatches
(−3), insertions and deletions (−16 each). An extension of an insertion or deletion receives
a penalty of −1.

For convenience, we begin with the matrix recurrences for the alignment example, derived
following the translation scheme.

3.5.1 Recurrence derivation

The traditional way to describe DP algorithms is in the form of matrix recurrences, de-
scribing the calculation rules for the corresponding DP matrix entries. In case of a DP
algorithm with more than a single DP matrix, these recurrences are also used to express the
dependencies between table entries. The translation phase consist of two steps. In the first
step, only the grammar is transformed, including symbolic representations of the algebra
function calls. These general recurrences then serve as a template for specialization with
the desired algebras.

The following shows the general matrix recurrence for production alignment :



50 CHAPTER 3. LANGUAGE DEFINITION

for j = 0 to n do

for i = j to 0 do

alignmenti,j = h(

[nil((i, j))|j − i ≥ 0] ++

[r(zi+1, p2, zj)|j − i ≥ 2, p2 ∈ alignmenti+1,j−1] ++

[d(zi+1, p2)|j − i ≥ 1, p2 ∈ xDeli+1,j ] ++

[i(p1, zj)|j − i ≥ 1, p1 ∈ xInsi,j−1])

xDeli,j = . . .

xInsi,j = . . .

The outer for-loops guarantee that calculations are performed with increasing subword
length, such that optimal solutions can be computed from optimal solutions of subprob-
lems.

Specialized for algebra affine, we obtain the following recurrence:

alignmenti,j = max(

[0|j − i ≥ 0] ++

[if zi+1 == zj then alignmenti+1,j−1 + 4

else alignmenti+1,j−1 − 3|j − i ≥ 2] ++

[xDeli+1,j − 16|j − i ≥ 1] ++

[xInsi,j−1 − 16|j − i ≥ 1])

The recurrence derivation is described in detail in Section 4.2.

Apart from the recurrences, the calculation order has to be derived. For example, the ta-
ble entry alignmenti,j depends on alignmenti+1,j−1, xDeli+1,j and xInsi,j−1. We have
to guarantee that these entries are already available when alignmenti,j is calculated. This
is no problem in a data-driven language like Haskell, since all computations are made on
demand. In the compiled, imperative implementation, these dependencies require an addi-
tional analysis. For the case above, the correct calculation order is already guaranteed by
the two outer for-loops. Things become more difficult, when dependencies exists, where a
calculation depends on a result of another table entry for the same subword. Here we have
to make sure that the calculation is ordered in a way, such that all results are calculated
before they are used. This problem can be solved by dependency analysis of the gener-
ated recurrences, together with a topological sort. For our running example, the order of
calculation derived is alignment, xDel, xIns, skipL, and skipR. The dependency analysis is
described in detail in Section 4.3.



3.5. COMPILATION CHALLENGES 51

These recurrences can be implemented straightforward in an imperative target language,
using an array for each recurrence and a list data structure for the calculation. Compared
to the embedding in Haskell, this step already achieves a significant speedup in constant
factors. In the following we first report on optimizations that even affect the asymptotic
runtime behavior. Then we show some optimizations that further improve constant factors.

3.5.2 Table design for optimal asymptotic efficiency

Our first optimizations address the memory requirements for the dynamic programming
tables. The main question here is which results need to be stored in tables, and which
results do not need to be stored. We can divide this question into three subproblems:

1. Determine the nonterminals whose results need to be stored,

2. determine the table dimensions,

3. and determine the table sizes.

Challenge 1: Table design The first challenge is to decide which nonterminals need to
be stored in DP tables. The easiest way to handle this situation would be to introduce a DP
table for every nonterminal symbol of the tree grammar. This approach is of course very
luxurious. For example, the nonterminals skipR and skipL in the Smith-Waterman grammar
could also be implemented as recursive functions without worsening the asymptotic runtime
of the algorithm. The other extreme – no DP tables at all – leads of course to an exponential
runtime of the algorithm. The challenge here is to find the minimal number of tables, such
that the algorithm can be implemented with optimal asymptotic runtime.

Solution We have shown that this problem is NP complete (Section 4.5). Being no com-
putational problem for such small grammars like our example here, it is a serious obstacle
when dealing with larger grammars. Realistic applications use up to 50 nonterminal symbols
and 150 rule alternatives. We have implemented several strategies to deal with this situa-
tion. These include user-annotations, preprocessing phases, a brute force approach for small
grammars, and an approximate approach for larger grammars. The table design problem is
studied in detail in Section 4.5.

Challenge 2: Table dimension Given that the table design analysis determined that
a certain nonterminal needs to be tabulated, the next task is to decide on the required
dimension for this table. For example, nonterminal skipR could be tabulated in a one-
dimensional table, since only a linear number of results are needed during calculation. On
the other hand, nonterminal alignment needs a two-dimensional tabulation.



52 CHAPTER 3. LANGUAGE DEFINITION

Solution We have implemented a simple usage-analysis, where for each nonterminal the
set of index bounds is derived. With this information the compiler can decide whether a
nonterminal has to be tabulated as a one- or as a two-dimensional table.

Challenge 3: Table sizes Yield size analysis determines the valid input lengths for
every nonterminal of the grammar (Section 4.1). For example, consider a nonterminal with
a yield size of (2,∞). This means, that this nonterminal can by no means have any results
for subwords shorter than length 2, and therefore no table space needs to be reserved for
these results. The effect of this analysis is more impressive for nonterminals that have a
limited upper yield size. For example, a nonterminal with yield size (0, 30) can be tabulated
in a table of dimension n× 30 rather than n× n.

Solution We have implemented yield size analysis, and incorporate this information dur-
ing the code generation phase for the table memory allocation.

3.5.3 Optimization in inner loops by change of data type

The matrix recurrences can be directly translated in executable C code, adopting the list-
based implementation of the Haskell embedding.

Challenge 4: List elimination In cases where the objective function delivers only a
single result, we can further speedup this calculation by a change of data type to atomic
result values.

Solution We begin with example target code for production alignment :

static void calc_alignment(int i, int j)

{

int v1, v2, v3, v4, v5, v6, v7;

if ((j-i) >= 0) {

/* v1 = nil <<< astring */

v1 = 0;

/* v2 = r <<< achar ~~~ p alignment ~~~ achar */

if ((j-i) >= 2) {

v2 = (z[i+1] == z[j]) ?

tbl_alignment(i+1, j-1) + 4 :

tbl_alignment(i+1, j-1) - 3;

} else v2 = INTMIN;

/* v3 = d <<< achar ~~~ p xDel */

if ((j-i) >= 1) {



3.5. COMPILATION CHALLENGES 53

v3 = tbl_xDel(i+1, j) - 16;

} else v2 = INTMIN;

/* v4 = i <<< p xIns ~~~ achar */

if ((j-i) >= 1) {

v4 = tbl_xIns(i, j-1) - 16;

} else v2 = INTMIN;

/* h xs = [maximum xs] */

v5 = v3 > v4 ? v3 : v4;

v6 = v2 > v5 ? v2 : v5;

v7 = v1 > v6 ? v1 : v6;

tbl_alignment(i, j) = v7;

}

}

Since each recurrence delivers only a single result in this case (the maximum value), the
target code can completely get by with atomic integer result values. In other cases, e.g.
when the objective function yields more than a single result, linked lists are used for the
implementation.

The basic target code generation is completed by additional code for memory handling and
the main loop calling the calculation procedures in the order derived by dependency analysis.

The code generation phase is studied in detail in Section 4.4.

3.5.4 Backtracing and suboptimal candidates

Challenge 5: Backtracing In most applications of dynamic programming, one is not
only interested in the optimal result of the algorithm, but also in the way how this re-
sult was calculated. For this, the ADP language provides the operator ***, which allows
to combine algebras in a flexible manner [49]. For example, the combination affine ***

prettyprint generates a new algebra that calculates the best score for algebra affine,
together with the corresponding candidates generated by an algebra prettyprint. A draw-
back of this approach is its unsatisfying efficiency. For each of the O(n2) table entries,
additional data structures have to be constructed for the candidates’ representations. In
the Haskell embedding, the additional effort is low, due the lazy nature of the language. In
the C implementation, we can not easily simulate this laziness. We therefore implement a
backtracing approach:

Solution Candidate generation is performed in two phases. In the first phase, the DP
tables are filled with atomic results in the way described above. After the calculation is
completely finished and each table entry is filled with its corresponding result value, the
way of the calculation is reconstructed by a backtrace through the DP tables [21].



54 CHAPTER 3. LANGUAGE DEFINITION

We have implemented methods for automatic creation of program code that handles this
backtracing procedure. This consists of several additional program parts, and we again show
only an example:

static struct str_Signature *back_alignment(int i, int j)

{

struct str1 v1, v2, v3, v4, v5, v6, v7;

/* v1 = nil <<< astring */

if ((j-i) >= 0) {

v1.alg_affine = 0; v1.alg_enum = new_Nil(i, j);

}

else { v1.alg_affine = INTMIN; v1.alg_enum = NULL; }

/* v2 = r <<< achar ~~~ p alignment ~~~ achar */

if ((j-i) >= 2) {

v2.alg_affine = (z[i+1] == z[j]) ?

tbl_alignment(i+1, j-1) + 4 :

tbl_alignment(i+1, j-1) - 3;

v2.alg_enum =

new_R(z[i+1], back_alignment, i+1, j-1, z[j]);

}

else { v2.alg_affine = INTMIN; v2.alg_enum = NULL; }

/* v3 = d <<< achar ~~~ p xDel */

if ((j-i) >= 1) {

v3.alg_affine = tbl_xDel(i+1, j) - 16;

v3.alg_enum = new_D(z[i+1], back_xDel, i+1, j);

}

else { v3.alg_affine = INTMIN; v3.alg_enum = NULL; }

/* v4 = i <<< p xIns ~~~ achar */

if ((j-i) >= 1) {

v4.alg_affine = tbl_xIns(i, j-1) - 16;

v4.alg_enum = new_I(back_xIns, i, j-1, z[j]);

}

else { v4.alg_affine = INTMIN; v4.alg_enum = NULL; }

v5 = v3.alg_affine > v4.alg_affine ? v3 : v4;

v6 = v2.alg_affine > v5.alg_affine ? v2 : v5;

v7 = v1.alg_affine > v6.alg_affine ? v1 : v6;

return(build_str_Signature(v7.alg_enum));

}

The generated code has the same structure as the code for calculation of atomic results. For
each value, we also store additional information to control the backtracing. For example,
the score for the replacement operation (v2) depends on table entry alignmenti+1,j−1 and
the input elements zi+1 and zj . The function new R creates a data entry that stores both
input elements and a pointer to the backtrace function back alignment together with the
corresponding indices i + 1 and j − 1. This procedure is repeated for the other parts of the



3.5. COMPILATION CHALLENGES 55

recurrence, and the data entry with the maximum score is stored in v7. Finally, function
build str Signature traverses the generated data structure, logs the path of the current
backtrace, and uses the stored function pointer to trigger the next backtrace step. This is
repeated until a terminating rule is reached (here: nil).

Challenge 6: Suboptimal candidates Another chance for optimization lies in the
handling of suboptimal candidates. For example, in RNA secondary structure prediction
one is often not only interested in the best solution, but also in suboptimal solutions that
occur in a certain range below the optimal one. In ADP, this can be simply implemented
by an objective function that delivers a list of candidate scores instead of a single score.

Solution In the C implementation we again take a different approach. In order to avoid
list-handling as far as possible, we postpone the calculations related to suboptimality to the
backtrace phase. It follows the approach described by Wuchty et al. [57]. We have added an
option to the code generation phase such that code implementing this suboptimal backtrace
is generated automatically for any given ADP algorithm.



56 CHAPTER 3. LANGUAGE DEFINITION



Chapter 4

Compiling ADP

This chapter describes in detail the steps needed to compile an ADP program into an
imperative target program. Section 4.1 describes the yield size analysis, an elementary
analysis needed for most subsequent compilation tasks. The recurrence derivation is studied
in Section 4.2. Finding a suitable calculation order for these recurrences is the task of the
dependency analysis. This is described in Section 4.3. The code generation phase then
follows in Section 4.4. Finding good and optimal table configurations is the task of the
table design phase. This phase is described in Section 4.5. Finally, the interface creation
for the generated ADP programs is studied in Section 4.6.

4.1 Yield size analysis

4.1.1 Motivation

In this section we develop a method to calculate the yield sizes for an ADP program. The
results of this analysis can be used in several phases of the compilation:

• When developing embedded ADP programs, we can abandon the specialized Next-
Combinators (Section 4.1.3). For larger programs this is relatively complex and can
easily lead to subtle errors. With the help of yield size analysis it is possible to
automatically annotate the source program with the optimal set of combinators. The
ADP developer can then fully concentrate on developing the recurrences without the
need to think about specialized combinators. Moreover, we can check user-annotated
programs for correctness.

• The knowledge about yield sizes allows to derive the matrix recurrences in a very
elegant way (Section 4.2). At the same time, it supports finding optimal boundaries

57



58 CHAPTER 4. COMPILING ADP

for the generated loops in the target language.

• While generating the target program, the calculation order of the recurrences must be
derived. It must be guaranteed that all values used are already calculated. The results
of yield size analysis can also be used for this dependency analysis (Section 4.3).

4.1.2 Yield size analysis

The main idea of the analysis is that the yield sizes of terminal parsers are known. For
example, the parser astringp yields at least one element, and the parser achar yields exactly
one element. We can then easily calculate the yield sizes by structural recursion on the
source grammar.

Let IN∞ = IN ∪ {∞} and
↔
yp = (lp, up) ∈ (IN∞, IN∞) the yield size of a parser p. For the

parsers introduced in Section 3.2, we define the yield sizes as follows:
↔
y empty = (0, 0)
↔
y achar = (1, 1)
↔
y astring = (0,∞)
↔
y astringp = (1,∞)
↔
y char c = (1, 1)
↔
y string s = (|s|, |s|)
↔
y loc = (0, 0)

In the following, we will demonstrate the analysis step-by-step with some examples. Let p
be a production with p = achar ∼∼∼ astringp. Intuitively, we can say that the yield size
↔
yp can be calculated by

↔
yp = (lachar + lastringp, uachar + uastringp)

= (1 + 1, 1 +∞) = (2, ∞)

With this example, we define operator +y , that sums up the yield sizes of two parsers in
the following way:

↔
yp +y

↔
yq = (lp, up) +y (lq, uq) = (lp + lq , up + uq) (4.1)

We can now describe our example calculation by
↔
yp =

↔
y achar +y

↔
y astringp. Accordingly

we define operator ∪y by

↔
yp ∪y

↔
yq = (lp, up) ∪y (lq , uq) = (min lp lq , max up uq), (4.2)

for yield size calculation of two alternative parsers. Obviously, for p = achar | | | astringp
the following must apply:



4.1. YIELD SIZE ANALYSIS 59

↔
yp =

↔
y achar ∪y

↔
y astringp

= (1, 1) ∪y (1, ∞) = (1, ∞)

The combination of the two operators is shown in the following example:

p = achar ∼∼∼ achar | | |

string ,,hello” ∼∼∼ string ,,world”

↔
yp= ((1, 1) +y (1, 1)) ∪y

((5, 5) +y (5, 5))

= (2, 2) ∪y (10, 10) = (2, 10)

For dealing with filters we define another operator:

↔
yp ∩y

∩
yf = (lp, up) ∩y (lf , uf ) = (max lp lf , min up uf ) (4.3)

∩
yf ∈ (IN∞, IN∞) is called the yield size constraint. Another example shall demonstrate this:

p = astringp with (size 4 8)
↔
yp = (1, ∞) ∩y (4, 8) = (4, 8)

We can now describe the yield size analysis for a production p with p = up completely by
structural recursion:

↔
yp = ysau up with

ysau (Terminal t) =
↔
yt

ysau (Nonterminal nt) =
↔
ynt

ysau (p :∼∼∼ q) = ysau p +y ysau q

ysau ((p,
∩
yp) :∼∼ (q ,

∩
yq)) = (ysau p ∩y

∩
yp) +y (ysau q ∩y

∩
yq)

ysau (c :<<< p) = ysau p

ysau (p ‘With‘ f ) = ysau p ∩y
∩
yf

ysau (p :| | | q) = ysau p ∪y ysau q
ysau (p : . . . h) = ysau p

Fixpoint iteration

In the above definitions we assumed a given yield size
↔
ynt for a nonterminal nt . Since

productions can be defined mutually recursive, we can not imply this here. Hence, we
initialize the yield sizes of all productions with init = {

↔
ynt := (∞, 0) | (nt = u) ∈ P} and

do the analysis with a fixpoint iteration approach. Let P be the set of all productions and
Y = {

↔
ynt := (lnt, unt) | (nt = u) ∈ P} the set of the corresponding yield sizes. Then the

fixpoint iteration is defined as follows:



60 CHAPTER 4. COMPILING ADP

Y = fix init with

fix current =

{

current for current ≡ new

fix new otherwise

new = {
↔
ynt := ysau u | (nt = u) ∈ P}

In other words, the fixpoint iteration is repeated until two succeeding yield size analyses
have the same results. Here the question about termination arises. The function ysau

is monotonously falling in the first component l and monotonously rising in the second
component u. l always converges, since IN∞ is downward limited by 0. u does not necessarily
converge, but we can easily show that up = ∞ must apply, when up still rises after |P |
iterations:

Let P = {p1, ..., pn}, n = |P |. Let pi → pj be an appearance of the nonterminal pj in
production pi. Accordingly, let pi →∗ pj = pi → pj ∨ pi → pk →∗ pj be a dependence of
production pi on pj . If the productions depend circularly on each other, this cycle can have
at most length |P |. In this case the production possesses an infinite derivation, such that
up can be set to ∞, if it is still rising after |P | iterations.

Example:

test = achar ∼∼∼ test ∼∼∼ achar | | |
empty

1.
↔
y test = (1, 1) +y (∞, 0) +y (1, 1) ∪y

(0, 0)
= (0, 2)

2.
↔
y test = (1, 1) +y (0, 2) +y (1, 1) ∪y

(0, 0)
= (0, 4)
...
= (0, ∞)

Obviously,
↔
y test = (0, ∞) is correct.

At the same time, we can identify useless productions with this analysis. A production p
is useless, if lp = ∞ when reaching the fixpoint. p can not posses a finite derivation here.
Removing the terminal parser empty from the above example demonstrates this:



4.1. YIELD SIZE ANALYSIS 61

test = achar ∼∼∼ test ∼∼∼ achar

1.
↔
y test = (1, 1) +y (∞, 0) +y (1, 1)

= (∞, 2)

2.
↔
y test = (1, 1) +y (∞, 2) +y (1, 1)

= (∞, 4)
...
= (∞, ∞)

The parser test does not terminate in this case.

Yield size constraint revisited

The definitions of the yield size operators +y, ∪y and ∩y are very easy and convenient.
However, we need to take a closer look on the operator ∩y for filter applications. Consider
the following example:

f = (achar ∼∼∼ f) with (size 3 8) | | |
empty

1.
↔
y f = ((1, 1) +y (∞, 0)) ∩y (3, 8) ∪y

(0, 0)
= (0, 1)

2.
↔
y f = ((1, 1) +y (0, 1)) ∩y (3, 8) ∪y

(0, 0)
= (0, 2)
...
= (0,∞)

Here, the yield size of nonterminal f is calculated to (0,∞), which is wrong. Since the yield
parser works in a bottom-up fashion, the applications of size 3 8 filter out every application
of achar ∼∼∼ f . So the correct yield size of nonterminal f is (0, 0). A variant of the ∩y

operator corrects this problem:

↔
yp ∩y

∩
yf = (lp, up) ∩y (lf , uf )

= if lr > ur then (∞, 0) else (lr, ur)
where

(lr, ur) = (max lp lf , min up uf )

With the new definition of the ∩y operator we get the following result for our example:



62 CHAPTER 4. COMPILING ADP

f = (achar ∼∼∼ f) with (size 3 8) | | |
empty

1.
↔
y f = ((1, 1) +y (∞, 0)) ∩y (3, 8) ∪y

(0, 0)
= (0, 0)

2.
↔
y f = ((1, 1) +y (0, 0)) ∩y (3, 8) ∪y

(0, 0)
= (0, 0)

This calculation results in the correct yield size of nonterminal f . However, it is an open
problem whether this new definition is correct in full generality.

Abstract interpretation

The yield size analysis orients itself at the technique of abstract interpretation [4]. A classi-
cal example for abstract interpretation in the area of compiler construction is the strictness
analysis of functional programs [3, 36, 38]. The major characteristic of the abstract interpre-
tation is the abstraction of the input data domain to an abstract domain. In our application
this is the domain of the yield sizes (IN∞, IN∞). However, an embedding into the formalisms
of the classical abstract interpretation is quite difficult. Here we do not abstract directly on
the input and output of a program, but on a tree grammar. One can also think of that the
yield size analysis can be an application of grammar flow analysis [32, 56]. Here however,
we use a direct approach.

4.1.3 Combinator optimization

As described in Section 2.5.5, each occurrence of a ∼∼∼ combinator multiplies the runtime
by the input length. An expression p ∼∼∼ q iterates over all possible subwords of p and
q. When p or q have a constant or an upper bounded yield size, this is a fruitless effort.

The common approach during the development of an embedded ADP prototype is to in-
troduce optimized variants of this combinator. For example, the parsers r − ∼∼ p and
p ∼∼− r have the same asymptotic runtime as p alone.

Accordingly, we can develop variants for other cases, or we can directly use the ∼∼

combinator with concrete yield sizes. For larger programs, this can easily become rather
complex. Moreover, defining a wrong yield size can also lead to wrong program results.

With the help of yield size analysis, we can completely automate this optimization. The
process divides into two phases:

1. In the first phase all occurrences of the ∼∼∼ combinator are replaced by the yield
size enriched combinator ∼∼ .



4.1. YIELD SIZE ANALYSIS 63

2. To increase readability, all combinators are then replaced by their specialized versions
(if available).

Phase I: enrich combinators

�

�

�



Overview: enrich combinators
The function enc replaces the “standard-combinator” ∼∼∼ by the yield size-
enriched combinator ∼∼ .

enc : enrich next combinators

enc up → (
↔
yp, up̄)

Input Output

up: Production
↔
yp: Yield size of up

up̄: Optimized production p

Figure 4.1: The combinator-enrichment-function enc

Let p be a production with p = up. The combinator optimization is initialized with

(
↔
yp, up̄) = enc up. The function enc copies the input-structure and also carries the

yield sizes. An expression p ∼∼∼ q is then replaced by the yield size enriched expression
(p̄,

↔
yp) ∼∼ (q̄,

↔
yq).

(
↔
yp, up̄) = enc up with

enc (Terminal t) = (
↔
yt, Terminal t)

The yield size
↔
ynt of a nonterminal nt is taken directly from the results of yield size analysis:

enc (Nonterminal nt) = (
↔
ynt, Nonterminal nt)

enc (p :∼∼∼ q) = (
↔
yp +y

↔
yq, (p̄,

↔
yp) :∼∼ (q̄,

↔
yq))

with

(
↔
yp, p̄) = enc p

(
↔
yq, q̄) = enc q

With the ∼∼ combinator, the user can declare concrete yield sizes right from the start. An

expression ((p,
∩
yfl) ∼∼ (q ,

∩
yfr)) is semantically equivalent to (p with fl) ∼∼∼ (q with fr).

Figure 4.2 shows an example.



64 CHAPTER 4. COMPILING ADP

�

�

�



A production

test = f <<< (astringp with size 4 9) ∼∼∼ (astringp with minsize 3)

can also be written as

test = f <<< astringp ∼∼ ! astringp
where

( ∼∼ ! ) = (∼∼∗) (4, 9) 3

The combinator ∼∼∗ is a special case of the ∼∼ combinator for an unlimited
parser on the right side.

Figure 4.2: Semantics of the ∼∼ combinator

However, the case can arise here, that the user defined
∩
yp and

∩
yq collide with the values

calculated in yield size analysis. For example, the production

test = f <<< (astringp with maxsize 3) ∼∼ ! astringp
where

( ∼∼ ! ) = (∼∼∗) (5, 10) 1

makes no sense, since
↔
yp ∩y

∩
yp = (1, 3) ∩y (5, 10) = (5, 3). In this case, the analysis

ends with an error message:

enc ((p,
∩
yp) :∼∼ (q ,

∩
yq))

=

{

error “yield size conflict ′′ if lp̄ > up̄ ∨ lq̄ > uq̄

(
↔
yp̄ +y

↔
yq̄ , (p̄,

↔
yp̄) :∼∼ (q̄,

↔
yq̄)) otherwise

with

(
↔
yp, p̄) = enc p

(
↔
yq, q̄) = enc q
↔
yp̄ =

↔
yp ∩y

∩
yp

↔
yq̄ =

↔
yq ∩y

∩
yq

enc (c :<<< p) = (
↔
yp, c :<<< p̄)

with (
↔
yp, p̄) = enc p



4.1. YIELD SIZE ANALYSIS 65

enc (p :| | | q) = (
↔
yp ∪y

↔
yq , p̄ :| | | q̄)

with

(
↔
yp, p̄) = enc p

(
↔
yq, q̄) = enc q

During the transformation, we can omit all length-limited filter applications. For example,
the expression

astringp ∼∼∼ (astringp with minsize 3)

is transformed into the expression

(astringp, (1, ∞)) ∼∼ ((astringp with minsize 3), (3, ∞))

which makes the additional filter application minsize 3 obsolete. However, to increase
readability of the transformed program, we will keep this additional filter. Here the runtime
is only increased by a small constant factor.

enc (p ‘With‘ f ) = (
↔
yp ∩y

∩
yf , p̄ ‘With‘ f )

with (
↔
yp, p̄) = enc p

enc (p : . . . h) = (
↔
yp, p̄ : . . . h)

with (
↔
yp, p̄) = enc p

Figure 4.3 shows an example.

�

�

�



p1 = tabulated (

((f <<< ((string ‘‘Hello’’) ~~~ (string ‘‘world’’))) | | |
(r <<< ((achar ~~~ astring) ~~~ astringp))))

-- production p1, yield size: (2,Infinite)

p1 = tabulated (

((f <<< ((string ‘‘Hello’’) ((~~) (5,5) (5,5)) (string ‘‘world’’))) | | |
(r <<< ((achar ((~~) (1,1) (0,Infinite)) astring)

((~~) (1,Infinite) (1,Infinite)) astringp))))

Figure 4.3: Example for combinator optimization

Phase II: replace combinators

After this optimization phase, we can now directly print out the optimized version of the
program. Due to the exclusive use of the ∼∼ combinator, this version is not very readable.



66 CHAPTER 4. COMPILING ADP

In a second transformation phase, we will now transform the ∼∼ combinators into a set of
predefined special combinators. The following table gives an overview:

↔
yp

↔
yq Variant

(0, ∞) (0, ∞) ∼∼∼

(1, ∞) (0, ∞) +∼∼
(0, ∞) (1, ∞) ∼∼+
(1, ∞) (1, ∞) ∼−∼
(1, 1) (0, ∞) −∼∼
(0, ∞) (1, 1) ∼∼−

For all other cases we generate a combinator of the form ∼∼ !+ = (∼∼)
↔
yp

↔
yq , where the

number of “!” depends on the number of generated combinators in the current production.
As shown in Figure 4.2 we use the following special cases of ∼∼ for unlimited yield sizes:

(∼∼∗)
↔
yp lq = (∼∼)

↔
yp (lq , ∞)

(∗∼∼) lp
↔
yq = (∼∼) (lp, ∞)

↔
yq

(∗∼∗) lp lq = (∼∼) (lp, ∞) (lq , ∞)

Figure 4.4 shows the result for the example of Figure 4.3.

�

�

�



-- production p1, yield size: (2,Infinite)

p1 = tabulated (

((f <<< ((string ‘‘Hello’’) ((~~) (5,5) (5,5)) (string ‘‘world’’))) | | |
(r <<< ((achar ((~~) (1,1) (0,Infinite)) astring)

((~~) (1,Infinite) (1,Infinite)) astringp))))

-- production p1, yield size: (2,Infinite)

p1 = tabulated (

((f <<< ((string ‘‘Hello’’) ~~! (string ‘‘world’’))) | | |
(r <<< ((achar -~~ astring) ~-~ astringp))))

where

(~~!) = (~~) (5,5) (5,5)

Figure 4.4: Example for a replacement of combinators



4.2. RECURRENCE DERIVATION 67

4.2 Recurrence derivation

No subscripts, no errors!

One of the major strengths of Algebraic Dynamic Programming is the lack of subscripts.
Since no subscripts are used, no subscript errors can be made. In traditional dynamic
programming, subscript errors are a frequent source of error.

In the implementation of ADP programs in an imperative language, we can hardly do with-
out subscripts. In the following section we describe an approach to calculate the subscripts
for a given ADP program.

4.2.1 Subword convention

A central property of Algebraic Dynamic Programming is the access to subwords of the
input sequence. Let x be a word of length n with x = x1...xn. The subscript pair (i , j )
stands for a subword of x with (i , j ) = xi+1...xj . This results in a number of interesting
properties:

(0, n) = x

(0, k) ++ (k , n) = x

|(i , j )| = j − i with i ≤ j

Example: 0H1E2L3L4O5

This property will be helpful during the subscript calculation.

4.2.2 Intermediate language

Until now, we have described all transformation on the abstract syntax of the source lan-
guage (Section 3.1). For the subscript derivation we now move to an intermediate language



68 CHAPTER 4. COMPILING ADP

S. We describe this intermediate language by grammar GS :

data ProductionS = ProductionS Ident UnitS

data UnitS = TerminalS Ident Subscripts

| NonterminalS Ident Subscripts

| UnitS :∼∼∼S UnitS

| Function :<<<S UnitS

| UnitS ‘With‘S (Ident , Subscripts)

| UnitS :| | |S UnitS

| UnitS : . . .S Ident

Unlike in the abstract syntax of the source language, the two variants of the ∼∼∼ combina-
tor ( ∼∼∼ and ∼∼ ) exist only in one variant here. We will eliminate the ∼∼ combinator
in the method described below. Additionally, terminal symbols, nonterminal symbols and
filters are enriched with an expression for the subscripts:

type Subscripts = (MathExp, MathExp)

data MathExp = MNum Int

| MV ar Ident

| MathExp : + MathExp

| MathExp : − MathExp

| Max MathExp MathExp

| Min MathExp MathExp

The application of an algebra function is also extended by additional information. The field
Bounds is used in later translation phases for checking the input length of the input. Loop
contains information about the generated inner loops in the imperative representation:

type Function = (Ident , Bounds, [Loop])

type Bounds = (Subscripts, YSize)

type Loop = (Ident , MathExp, MathExp)

4.2.3 Phase I

For a simplified start in the description of the procedure, we will restrict the analysis to
terminal parsers combined with the ∼∼∼ combinator.

Let p be a production with p = up. We assume that we will generate a double-loop of the
form



4.2. RECURRENCE DERIVATION 69

�

�

�



Overview: Subscript derivation (1)
The function dss calculates the subscripts and transforms the source language
into the language S.

dss : derive subscripts

dss (i , j ) up → (
↔
yp, uSp )

Input Output

(i , j ): Subscript expressions
↔
yp: Yield size of up

up: Production uSp : Subscript-enriched production up

Figure 4.5: The subscript derivation dss (simplified)

for j := 0 to n do
for i := j to 0 do

uSp (i , j )

in the imperative target program. Let uSp be the subscript-enriched version of the production
up. We initialize the procedure with dss (i , j ) up. Corresponding to Section 4.1.3, we will
carry the yield sizes together with the target structure.

dss (i , j ) (Terminal t) = (
↔
yt, T erminalS t (i , j ))

dss (i , j ) (p :∼∼∼ q) = (
↔
yp +y

↔
yq , p̄ :∼∼∼S q̄)

with

(
↔
yp, p̄) = dss (i , jp) p

(
↔
yq, q̄) = dss (iq, j ) q

For the subscript variables jp and iq we now need to examine three alternative cases. If p

has a constant yield size, we can clearly set jp to i + lp. Correspondingly, let iq = j − lq for
a constant yield size of q. If neither p nor q have a constant yield size, an inner loop has to
be introduced. In this case we use a loop variable k. Due to the subword convention, we



70 CHAPTER 4. COMPILING ADP

can set jp = iq in all other cases. Let cnst
↔
yp = cnst (lp, up) = lp ≡ up.

jp =











k for ¬ cnst
↔
yp ∧ ¬ cnst

↔
yq

i + lp for cnst
↔
yp

iq otherwise

iq =











k for ¬ cnst
↔
yp ∧ ¬ cnst

↔
yq

j − lq for cnst
↔
yq

jp otherwise

(4.4)

The loop boundaries of an inner loop variable k are calculated from the overlap of the two
parsers p and q. This is depicted in Figure 4.6. One shall also note the direct correspondence
to the definitions of the different variants of the ∼∼ combinator (Figure 4.7):

kstart =

{

i + lp for uq ≡ ∞

max (i + lp) (j − uq) otherwise

kend =

{

j − lq for up ≡∞

min (i + up) (j − lq) otherwise

(4.5)

�

�

�



pppppppppppppppppppppppppppppppppp
qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq

| |

i + lp j − uq i + up j − lq
i <..................>

k
j

k ≥ i + lp k ≤ j − lq
k ≥ j − uq k ≤ i + up

=⇒ k ← [max (i + lp, j − uq) . . . min (i + up, j − lq)]

Figure 4.6: Running boundaries of a loop k



4.2. RECURRENCE DERIVATION 71

�

�

�



(∼∼) :: (Int , Int)→ (Int , Int)→ Parser (a → b)→ Parser a → Parser b
(∼∼) (lp, up) (lq, uq) p q (i , j )

= [x y | k ← [max (i + lp) (j − uq) . .min (i + up) (j − lq)],
x ← p (i , k), y ← q (k , j )]

(∼∼∗) :: (Int , Int)→ Int → Parser (a → b)→ Parser a → Parser b
(∼∼∗) (lp, up) lq p q (i , j )

= [x y | k ← [(i + lp) . .min (i + up) (j − lq)],
x ← p (i , k), y ← q (k , j )]

(∗∼∼) :: Int → (Int , Int)→ Parser (a → b)→ Parser a → Parser b
(∗∼∼) lp (lq , uq) p q (i , j )

= [x y | k ← [max (i + lp) (j − uq) . . (j − lq)],
x ← p (i , k), y ← q (k , j )]

(∗∼∗) :: Int → Int → Parser (a → b)→ Parser a → Parser b
(∗∼∗) lp lq p q (i , j )

= [x y | k ← [(i + lp) . . (j − lq)],
x ← p (i , k), y ← q (k , j )]

Figure 4.7: Combinators with concrete length declarations

Example 1. Let p be a production with p = achar ∼∼∼ astringp. The subscripts of p

are calculated as follows:

dss (i , j ) (achar :∼∼∼ astringp) = (
↔
yp +y

↔
yq , p̄ :∼∼∼S q̄)

with

(
↔
yp, p̄) = dss (i , jp) achar = ((1, 1), achar (i , jp))

(
↔
yq, q̄) = dss (iq, j ) astringp = ((1, ∞), astringp (iq , j ))

= ((2, ∞), achar (i , jp) :∼∼∼S astringp (iq , j ))

Following equation 4.4, jp = i + lp = i + 1 and iq = jp = i + 1 hold. Therefore:

dss (i , j ) (achar :∼∼∼ astringp)
= ((2, ∞), achar (i , i + 1) :∼∼∼S astringp (i + 1, j ))



72 CHAPTER 4. COMPILING ADP

Example 2. For this example, let p = astringp ∼∼∼ astringp:

dss (i , j ) (astringp :∼∼∼ astringp) = (
↔
yp +y

↔
yq , p̄ :∼∼∼S q̄)

with

(
↔
yp, p̄) = dss (i , jp) astringp = ((1, ∞), astringp (i , jp))

(
↔
yq, q̄) = dss (iq, j ) astringp = ((1, ∞), astringp (iq , j ))

= ((2, ∞), astringp (i , jp) :∼∼∼S astringp (iq , j ))

Since neither
↔
yp nor

↔
yq are constant, a new loop has to be introduced. The loop boundaries

are calculated in correspondence to Equation 4.5 to kstart = i + lp = i + 1 and kend =
j − lq = j − 1. Therefore:

dss (i , j ) (astringp :∼∼∼ astringp)
= ((2, ∞), astringp (i , k) :∼∼∼S astringp (k , j )) with k ← [i + 1 . . . j − 1]

4.2.4 Yield size constraint

�

�

�



Overview: Subscript derivation (2)
The function dss calculates the subscripts and transforms the source language
into the language S.

dss : derive subscripts

dss (i , j )
∩
yU up → (

↔
yp, uSp )

Input Output

(i , j ): Subscript expressions
↔
yp: Yield size of up

up: Production uSp : Subscript-enriched production up
∩
yU : Yield size constraint for up

Figure 4.8: The subscript calculation function dss

For the calculation of filter expressions it is necessary to take the yield size constraints
into account. The application of a filter f on an expression q with yield size

↔
yq results

in
↔
yq ∩y

∩
yf as the new yield size for q. Therefore, we extend the function dss with an

additional argument
∩
yU for the yield size constraint. This constraint will be initialized with

(0, ∞).



4.2. RECURRENCE DERIVATION 73

dss (i , j )
∩
yU (Terminal t) = (

↔
yt ∩y

∩
yU , T erminalS t (i , j ))

dss (i , j )
∩
yU (Nonterminal nt) = (

↔
ynt ∩y

∩
yU , NonterminalS nt ( i , j ))

Filter expression can also be subject to a yield size constraint. Therefore, (p with f ) is

updated with
∩
yf ∩y

∩
yU :

dss (i , j )
∩
yU (p ‘With‘ f ) = (

↔
yp, p̄ ‘With‘S (f , (i , j )))

with

(
↔
yp, p̄) = dss (i , j ) (

∩
yf ∩y

∩
yU ) p

For the ∼∼ combinator, the user-defined
∩
yp and

∩
yq are passed to p and q. The subscript

variables jp and iq are calculated as in Equation 4.4.

dss (i , j )
∩
yU ((p,

∩
yp) :∼∼ (q ,

∩
yq)) = (

↔
yU , p̄ :∼∼∼S q̄)

with

(
↔
yp, p̄) = dss (i , jp)

∩
yp p

(
↔
yq, q̄) = dss (iq , j )

∩
yq q

↔
yU = (

↔
yp +y

↔
yq) ∩y

∩
yU

The ∼∼∼ combinator now is a special case of the ∼∼ combinator:

dss (i , j )
∩
yU (p :∼∼∼ q) = dss (i , j )

∩
yU ((p, (0, ∞)) :∼∼ (q , (0, ∞)))

The loops loopsp collected during processing of expression p are tied to the algebra function
application f . Additionally the current subscripts (i , j ) are saved together with the yield

size
↔
yp to allow length checks in the target language.

dss (i , j )
∩
yU (f :<<< p) = (

↔
yp, (f, ((i , j ),

↔
yp), loopsp) :<<<S p̄)

with

(
↔
yp, p̄) = dss (i , j )

∩
yU p

Expressions combined via the | | | combinator are processed symmetrically:

dss (i , j )
∩
yU (p :| | | q) = (

↔
yU , (p̄ :| | |S q̄))

with

(
↔
yp, p̄) = dss (i , j )

∩
yU p

(
↔
yq, q̄) = dss (i , j )

∩
yU q

↔
yU =

↔
yp ∪y

↔
yq



74 CHAPTER 4. COMPILING ADP

Finally, the calculation for the choice combinator:

dss (i , j )
∩
yU (p : . . . h) = (

↔
yp, (p̄ : . . .S h))

with

(
↔
yp, p̄) = dss (i , j )

∩
yU p

Example 3. We will now demonstrate how the yield size constraints behave during the
subscript calculation. For this, we extend the production of Example 2 with the length-
limiting filter maxsize 7. Let p = astringp ∼∼∼ (astringp with (maxsize 7)).

dss (i , j ) (0, ∞) (astringp :∼∼∼ (astringp ‘With‘ (maxsize 7))) =
dss (i , j ) (0, ∞) ((astringp , (0, ∞)):∼∼((astringp ‘With‘ (maxsize 7)), (0, ∞))) =

(
↔
yp +y

↔
yq , p̄ :∼∼∼S q̄)

with

(
↔
yp, p̄) = dss (i , jp) (0, ∞) astringp = ((1, ∞), astringp (i , jp))

(
↔
yq, q̄) = dss (iq, j ) (0, ∞) (astringp ‘With‘ (maxsize 7))

= ((1, ∞) ∩y (0, 7), astringp (iq, j ) ‘With‘S ((maxsize 7) (iq , j )))

= ((1, 7), astringp (iq , j ) ‘With‘S ((maxsize 7) (iq, j )))

Again, neither
↔
yp nor

↔
yq are constant. Corresponding to Equation 4.5, the loop boundaries

are calculated to kstart = max (i + lp) (j −uq) = max (i +1) (j −7) and kend = j − lq =
j − 1. Therefore:

dss (i , j ) (0, ∞) (astringp :∼∼∼ (astringp ‘With‘ (maxsize 7)))
= ((2, ∞), astringp (i , k) :∼∼∼S (astringp (k , j ) ‘With‘S ((maxsize 7) (k , j ))))

with k ← [max (i + 1) (j − 7) . . . j − 1]

4.3 Dependency analysis

Before we generate the target program, the calculation order of the recurrences needs to
be derived. It must be guaranteed that all values are calculated before they are used.
In functional programming languages with lazy evaluation this is an integral part of the
evaluation model. In imperative programming languages however, we need to take care of
the order of calculation.

In a recurrence, all data access is restricted to results of subwords of the same or of smaller
lengths. With the construction of the outer loops, we can guarantee that results are calcu-
lated with increasing subword length. Therefore, for the dependency analysis it suffices to
search for expressions that access results of the same subword.



4.3. DEPENDENCY ANALYSIS 75

�

�

�



Overview: Dependency analysis
The function da derives the dependencies between two productions.

da : dependency analysis

da q (ll, lr)
∩
yp up → (

↔
yp, p → q)

Input Output

q : Searched nonterminal
↔
yp: Yield size of p

ll: Left yield size p → q : Dependency between p and q
lr: Right yield size
∩
yp: Yield size constraint for the produc-
tion p
up: Production

Figure 4.9: The dependency analysis function da

Figure 4.10 shows an example. From the results of subscript derivation it is immediately
clear, that p3 in any case needs to be calculated before p1 and p2, since both use p3!(i, j)
in the same iteration. The usage of p1 inside of p2 requires a deeper analysis of the cor-
responding loops, but here also exists a dependency. All other cases are irrelevant for the
dependency analysis. With a sort of these dependencies we come to the calculation order
p3, p1, p2.

Let p → q denote the usage of a production q from a production p inside the same loop
iteration. This implies that q needs to be calculated before p. The analysis works in the
same manner as the subscript derivation. Instead of subscripts we now calculate and pass
through the left and the right yield sizes ll and lr. These are used in case of a nonterminal
n̄t, to check whether an access can take place in the same loop iteration, i.e. in the form
n̄t ! (i , j ).

Let p be given by p = up.

p→ q iff da q (0, 0) (0, ∞) up with

da nt (ll, lr)
∩
yU (Terminal t) = (

↔
yt ∩y

∩
yU , False)

da nt (ll, lr)
∩
yU (Nonterminal n̄t) = (

↔
yn̄t ∩y

∩
yU , nt ≡ n̄t ∧ ll ≡ 0 ∧ lr ≡ 0)

da nt (ll, lr)
∩
yU ((p,

∩
yp) :∼∼ (q ,

∩
yq)) = (

↔
yU , dp ∨ dq)

with



76 CHAPTER 4. COMPILING ADP

�

�

�



p1 = tabulated(f1 <<< achar ~~~ p p2 ~~~ achar | | |
f2 <<< empty | | |
p p3)

p2 = tabulated(f3 <<< astring ~~~ p p1 ~~~ astring | | |
p p3)

p3 = tabulated(f4 <<< achar ~~~ p p1)

Subscript derivation:

p1!(i, j) =

f1(achar(i, i+1), p2!(i+1, j-1), achar(j-1, j))

++

f2(empty(i, j))

++

p3!(i, j)

p2!(i, j) =

for k2 = i to j do

for k = i to k2 do

f3(astring(i, k), p1!(k, k2), astring(k2, j))

++

p3!(i, j)

p3!(i, j) =

f4(achar(i, i+1), p1!(i+1, j))

Dependencies:

→ p1 p2 p3
p1 x
p2
p3 x x

⇒ Calculation order: p3, p1, p2

Figure 4.10: Example for a dependency analysis.



4.4. CODE GENERATION 77

(
↔
yp, dp) = da nt (ll, lr + lq)

∩
yp p

(
↔
yq , dq) = da nt (ll + lp, lr)

∩
yq q

↔
yU = (

↔
yp +y

↔
yq) ∩y

∩
yU

da nt (ll, lr)
∩
yU (p :∼∼∼ q) = da nt (ll, lr)

∩
yU ((p, (0, ∞)) :∼∼ (q , (0, ∞)))

da nt (ll, lr)
∩
yU (f :<<< p) = da nt (ll, lr)

∩
yU p

da nt (ll, lr)
∩
yU (p ‘With‘ f ) = da nt (ll, lr) (

∩
yf ∩y

∩
yU ) p

da nt (ll, lr)
∩
yU (p :| | | q) = (

↔
yp ∪y

↔
yq, dp ∨ dq)

with

(
↔
yp, dp) = da nt (ll, lr)

∩
yU p

(
↔
yq , dq) = da nt (ll, lr)

∩
yU q

da nt (ll, lr)
∩
yU (p : . . . f ) = da nt (ll, lr)

∩
yU p

The calculation order is then determined by a topological sort on →. Let P be the set of
productions and D a list of already sorted productions.

D = [ ]
while P 6= { }

R = {p | p, q ∈ P , p 6→ q }
D = D ++ R
P = P\R

In each iteration of the loop the list R holds all productions that do not depend on any
other production. R is then added to the list of sorted productions (D) and removed from
the list P . This is repeated until the list P is empty. In case of productions with circular
dependencies this procedure will not terminate. By an additional check for R = {} we can
catch this property and generate a suitable error message.

4.4 Code generation

In the following we describe the last steps of the translation: the code generation. This is
done in a multi-phase process. In the first step we translate the intermediate language S
into a second intermediate language LC, the language of list comprehensions. The programs
in this language are then optimized by eliminating unnecessary list constructs. After this
optimization we translate the language LC into the target language T L. These translations
are summarized as follows:



78 CHAPTER 4. COMPILING ADP

S → LC compile to list comprehensions

LC → LC list elimination

LC → T L target code generation

4.4.1 Intermediate language for list comprehensions

As intermediate language LC we use the language of list comprehensions. The following
algebraic data type defines its abstract syntax:

data LCexp = LC String Exp [LCQualifier ]
| LCAppend LCexp LCexp
| LCAppl String LCexp
| LCEnum Exp Exp
| LCTabAccess String SubScripts
| LCIf Exp LCexp LCexp
| LCEmpty

deriving (Show , Eq)

data LCQualifier = Filter Exp
| Generator Exp LCexp
| Let Exp Exp
deriving (Show , Eq)

type LCProd = (String , LCexp)

The main construct of a list comprehension is element LC . It contains an expression (Exp,
see Section 3.4) as head of the list comprehension and a list of qualifiers (LCQualifier ) as
the body. A qualifier then is either a filter, a generator or a let expression. LCAppend
appends two list comprehensions. This is used for applications of the | | |S combinator.
An application of a choice function is mapped to a LCAppl construct, which applies a
function to a list comprehension. LCEnum represents an enumeration of the form [a . . b ].
Nonterminals are mapped to a LCTabAccess construct. LCIf is used for filter applications
and finally, LCEmpty represents the empty list.

4.4.2 Terminal parsers

Terminal symbol are represented as list comprehensions. See also the terminal parser defi-
nitions in Section 2.5.1.



4.4. CODE GENERATION 79

terminals :: [(String , (Int , [Exp ]→ LCexp))]
terminals =

[("empty", (0, λ[ i , j ]→ LC "empty" j [ ])),
("achar", (0, λ[ i , j ]→ LC "achar" (ExpFA "getInput" j ) [ ])),
("astring", (0, λ[ i , j ]→ LC "astring" (ExpTupel [ i , j ]) [ ])),
("astringp", (0, λ[ i , j ]→ LC "astringp" (ExpTupel [ i , j ]) [ ])),
("char", (1, λ[ExpChar c, i , j ]→

LC "char" (ExpFA "getInput" j )
[Filter (ExpBinOp (ExpFA "getInput" j ) "==" (ExpChar c))]))]

("string", (1, λ[ExpString s , i , j ]→
LC "string" (ExpFA "getInputs" (i , j ))

[Filter (ExpBinOp (ExpFA "getInputs" (i , j )) "==" (ExpString s))])),
("loc", (0, λ[ i , j ]→ LC "loc" j [ ])),

�

�

�



Overview: Translating into language of list comprehension
The function sToLC translates the intermediate language S into the language
of list comprehensions, LC.

sToLC : S → LC transformation
sToLC up → lcp

Input Output
up S-production lcp: list comprehension expression

Figure 4.11: S → LC transformation

4.4.3 S → LC translation

We implement the transformation S → LC by structural recursion. Figure 4.11 gives an
overview.

The first definition is that of the terminal symbol TerminalS. The function lookupTerminal
fetches the corresponding definition out of the list terminals defined above. We then apply
the index pair (i, j) and the additional arguments on the terminal’s definition.

sToLC :: ILUnit → LCexp
sToLC (TerminalS (name, args) (i , j )) = lookupTerminal name args [ i , j ]

NonterminalS is directly mapped on LCTabAccess of language LC:



80 CHAPTER 4. COMPILING ADP

sToLC (NonterminalS name (i , j )) = LCTabAccess name (i , j )

An application of combinator :| | |S is mapped on LCAppend :

sToLC (p :| | |S q) = LCAppend (sToLC p) (sToLC q)

We use the function getAlgebraDef to fetch the definition of the choice function and translate
this definition to LCAppl :

sToLC (p : . . .S h) = LCAppl (getAlgebraDef h) (sToLC p)

When processing filter applications, we distinguish between two kinds of filters: The length-
limiting filters size , minsize and maxsize and all other filters. In this translation we do not
need to handle the length-limiting filters, since we have already incorporated them during
the subscript-calculation. All other filters are directly transformed into an LCIf -expression.

sToLC (p ‘With‘S (name , (i , j ))) =
if elem name ["size", "minsize", "maxsize"] then sToLC p
else LCIf (lookupFilter name [ i , j ]) (sToLC p) LCEmpty

The application of the :<<<S combinator is the central equation of the sToLC transforma-
tion. This is directly compiled into a list comprehension. The function getAlgebraDef fetches
the definition for the algebra function f. We store the arguments of this algebra function in
the list arguments f , and the definition of the algebra function in the variable rhs . The ex-
pressions that are to be applied to this algebra function are converted into a list by the func-
tion flat . These are then translated by structural recursion on function sToLC and assigned
to the corresponding arguments of the function’s definition (zip arguments f argument).
The yield size check stored in the variable bounds is directly mapped to a filter application
in the list comprehension. Loops and variable bindings are translated to generators of the
list comprehension.

sToLC ((f , bounds , loops) :<<<S p) = LC ”” rhs (Filter bounds++
map Generator loops++
map Generator binding)

where
(arguments f , rhs) = getAlgebraDef algfs f

arguments = map (sToLC ) (flat p)
flat (p :∼∼∼S q) = flat p ++ flat q
flat p = [p ]
binding = zip arguments f arguments

As example we use the ADP-program for a global alignment:



4.4. CODE GENERATION 81

alignment = tabulated (
nil <<< (char ’$’) | | |
d <<< achar − ∼∼ alignment | | |
i <<< alignment ∼∼− achar | | |
r <<< achar − ∼∼ alignment ∼∼− achar . . . h);

nil = 0
d a s = s − 1
i s a = s − 1
r a s b = if a ≡ b then s + 1 else s − 1

The subscript analysis generates the following S-program:

alignment ! (i , j ) =
h [

if (j − i) ≡ 1 then {
nil ((char ’$’) (i , j ))
}
++
if (j − i) ≥ 2 then {

d (achar (i , i + 1), alignment ! (i + 1, j ))
}
++
if (j − i) ≥ 2 then {

i (alignment ! (i , j − 1), achar (j − 1, j ))
}
++
if (j − i) ≥ 3 then {

r (achar (i , i + 1), alignment ! (i + 1, j − 1), achar (j − 1, j ))
}

]

The transformation S → LC then yields the following list comprehension:

alignment =
maximum (

[0 | (j − i) ≡ 1, a1 ← [z ! j | z ! j ≡ ’$’] ]++
[a2 − 1 | (j − i) ≥ 2, a1 ← [z ! (i + 1)],

a2 ← alignment ! (i + 1, j )]++
[a1 − 1 | (j − i) ≥ 2, a1 ← alignment ! (i , j − 1),

a2 ← [z ! j ] ]++
[if a1 ≡ a3 then a2 + 1 else a2 − 1 |



82 CHAPTER 4. COMPILING ADP

(j − i) ≥ 3, a1 ← [z ! (i + 1)],
a2 ← alignment ! (i + 1, j − 1),
a3 ← [z ! j ] ])

4.4.4 List elimination

In the above example it is remarkable, that all list comprehensions can only contain atomic
elements. For example, the generator a1 ← [z ! (i + 1)] is in any case only singleton.
The table alignment can also contain only maximally one element, since it closes with the
choice function maximum. Therefore the generator a2 ← alignment ! (i + 1, j ) can also
hold maximally one element. With this information we remove superfluous generators from
the list comprehensions. We achieve this by moving the corresponding generators directly
into the heads of the list comprehensions. This optimization then leads to the following
LC-program:

alignment =
maximum (

[0 | (j − i) ≡ 1, z ! j ≡ ’$’]++
[tbl alignment (i + 1, j )− 1 | (j − i) ≥ 2]++
[tbl alignment (i , j − 1)− 1 | (j − i) ≥ 2]++
[if z ! (i + 1) ≡ z ! j then tbl alignment (i + 1, j − 1) + 1

else tbl alignment (i + 1, j − 1)− 1 |
(j − i) ≥ 3])

In the following, we will translate this intermediate code into the target program.

4.4.5 Target code generation

The following algebraic data type defines the abstract syntax of the target language:

data TL = TLVar Ident
| TLAssign Ident TL
| TLIf Exp [TL ] [TL ]
| TLComment String
| TLFor Ident Exp Exp [TL ]
| TLNonterm Ident Subscripts
| TLExpr Exp

deriving (Show , Eq)

Here, TLVar holds a variable in the target language. TLAssign is an assignment of a
target language construct to a variable. The TLIf constructs represents an if-Expression.



4.4. CODE GENERATION 83

TLComment is a comment in the target language. TLFor is a for-loop, TLNonterm a use of
a nonterminal symbol. This is then either mapped to a table access (in case of a tabulated
nonterminal) or a function call (in case of a nontabulated nonterminal). Finally, TLExpr
can contain an expression in form of the data type Exp.

�

�

�



Overview: Code generation
The function cg translates the language of list comprehensions, LC, into the
target language T L.

cg : code generation
cg lcp → (vresult, tcp)

Input Output
lcp: list comprehension expression vresult: result variable

tcp: target code
States
temporary variables
loop variables
current choice function

Figure 4.12: Code generation

The function cg (Figure 4.12) is implemented via a state monad. The state consists of the
following elements:

• A list of temporary variables. With the function newTempVar we can fetch a new
temporary variable from the store of variables. The store itself is unlimited.

• The list of loop variables. With the function addLoopVar we can add an additional
loop variable to the store of variables.

• The current choice function. This function can be changed with function changeChoice
and accessed with function getChoice .

We begin our presentation with element LCAppl , the application of a choice function. Here
the current function is simply changed with the state monad function changeChoice :

cg (LCAppl chc lc) =
do

changeChoice chc
cg lc



84 CHAPTER 4. COMPILING ADP

With the application of a concatenation, the two expressions are first translated by structural
recursion and the results are stored in the variables v1 and v2 . Then a new temporary
variable v3 is introduced for storing the overall result of the concatenation. The code for
the actual selection is generated by the function cgChoiceSingleElement .

cg (LCAppend lc1 lc2 ) =
do

(v1 , code1 )← cg lc1
(v2 , code2 )← cg lc2
v3 ← newTempVar TLInt
chc ← getChoice
chcCode ← return (cgChoiceSingleElement v3 chc v1 v2 )
return (v3 , code1 ++ code2 ++ chcCode)

The compilation of an If-construct behaves similarly. The variables v1 and v2 hold the
results for the then- and the else-case. The variable v3 then stores the overall result. The
If-construct is directly compiled to an If-construct of the target language:

cg (LCIf exp lc1 lc2 ) =
do

(v1 , code1 )← cg lc1
(v2 , code2 )← cg lc2
v3 ← newTempVar TLInt
code ← return [TLIf exp (code1 ++ [TLAssign v3 (TLVar v1 )])

(code2 ++ [TLAssign v3 (TLVar v2 )])]
return (v3 , code)

A table access in the LC-language is compiled directly to a table access in the T L language:

cg (LCTabAccess nt ss) =
do

v1 ← newTempVar TLInt
code ← return [TLAssign v1 (TLNonterm nt ss)]
return (v1 , code)

For the empty list an assignment of the zero value is produced (function nilval ). The zero
value depends on the choice function. With maximization the zero value is INTMIN, with
minimization it is INTMAX, and with summation it is 0.

cg LCEmpty =
do

v1 ← newTempVar TLInt



4.4. CODE GENERATION 85

chc ← getChoice
code ← return [TLAssign v1 (nilval chc)]
return (v1 , code)

The largest part of the translation takes place during the actual list comprehension. Here,
the additional function cgLC serves as translator for the qualifiers of the list comprehension.

cg (LC cmt exp lcs) =
do

comment ← return [TLComment [cmt ] ]
(v , code)← cgLC [ ] exp lcs
return (v , comment ++ code)

The function cgLC has three arguments. The variable bind stores the bindings of the
algebra function’s variables to those of the corresponding qualifiers. The variable exp stores
the definition of the algebra function. The third argument is the list of qualifiers for the list
comprehension.

A filter-qualifier is translated into an If-construct of the target language:

cgLC bind exp ((Filter filterExp) : lcs) =
do

(v1 , code1 )← cgLC bind exp lcs
chc ← getChoice
code2 ← return [TLIf filterExp code1 [TLAssign v1 (nilval chc)]]
return (v1 , code2 )

An enumeration generator is translated into a loop of the target language:

cgLC bind exp ((Generator (ExpVar k) (LCEnum ( from) ( to))) : lcs) =
do

(v1 , code1 )← cgLC bind exp lcs
addLoopVar k
v2 ← newTempVar TLInt
chc ← getChoice
code2 ← return [TLAssign v2 (nilval chc),

TLFor k from to (code1 ++ cgChoiceSingleElement v2 chc v2 v1 )]
return (v2 , code2 )

All other generators are recursively compiled via cg lcexp and the result variable of this
compilation (v1 ) is bound to the corresponding generator-variable (a).

cgLC bind exp ((Generator (ExpVar a) lcexp) : lcs) =



86 CHAPTER 4. COMPILING ADP

do
(v1 , code1 )← cg lcexp
bind2 ← return [(a, v1 )]
(v2 , code2 )← cgLC (bind ++ bind2 ) exp lcs
return (v2 , code1 ++ code2 )

If the list of qualifiers is empty, the actual body of the list comprehension can be pro-
duced. The function insertVarbinds replaces all occurrences of the qualifier variables by the
corresponding variables of the target language:

cgLC bind exp [ ] =
do

v ← newTempVar TLInt
code ← return [TLAssign v (TLExp (insertVarBinds bind exp))]
return (v , code)

For our example, the function cg generates to following target code:

static void calc_alignment(int i, int j)

{

int v1, v2, v3, v4, v5, v6, v7;

/* nil <<< char ’$’ */

if ((j-i) == 1) {

if (z[j] == ’$’) {

v1 = 0;

}

else {

v1 = INTMIN;

}

}

else {

v1 = INTMIN;

}

/* d <<< achar ~~~ alignment */

if ((j-i) >= 2) {

v2 = tbl_alignment(i+1, j) - 1;

}

else {

v2 = INTMIN;

}

v3 = v1 > v2 ? v1 : v2;

/* i <<< alignment ~~~ achar */

if ((j-i) >= 2) {

v4 = tbl_alignment(i, j-1) - 1;



4.5. TABLE DESIGN 87

}

else {

v4 = INTMIN;

}

v5 = v3 > v4 ? v3 : v4;

/* r <<< achar ~~~ alignment ~~~ achar */

if ((j-i) >= 3) {

v6 = (z[i+1] == z[j]) ?

tbl_alignment(i+1, j-1) + 1 :

tbl_alignment(i+1, j-1) - 1 ;

}

else {

v6 = INTMIN;

}

v7 = v5 > v6 ? v5 : v6;

tbl_alignment(i, j) = v7;

}

4.5 Table design

This section is taken from [50].

Finding good and optimal table configurations is the problem studied in this section. Pre-
viously, this has been the programmer’s responsibility – explicitly so when using the ADP
approach, or implicitly otherwise. A most ambitious goal would be to completely automate
this step, virtually freeing the program designer from efficiency concerns. However, our main
result here shows that a complete automation of table design is computationally infeasible:
Both the choice of a good table configuration and the choice of an optimal configuration
are NP-complete problems. Consequently, we develop a pragmatic approach that tries to
reduce the problem size by various means to the point where the problem can be solved to
optimality.

4.5.1 Running Example: Palindromic structures in strings

As a running example, we shall use the analysis of palindromic structures in strings. A
separated palindrome [21] is a string of the form uv(u−1). In “abcdeba”, for example, the
separator v could be chosen to be “cde”, “bcdeb”, or “abcdeba”. Intuitively, we might say
that the first choice is the best, as it maximizes the length of u. Generally, we have some
scoring scheme that determines which palindromic structure is best for a given string. In
approximate separate palindromes we allow differences between u and u−1, using the familiar
string edit model with replacements, deletions and insertions. With such generalization, the



88 CHAPTER 4. COMPILING ADP

pal → match | d

char del

| i

ins char

del → match | d

char del

ins → match | i

ins char

match → r

char inner char

inner → sep

string

| pal

Anssim = IN
sim = (d, i, r, sep,h) where

d(a, s) = s − 1
i(s, b) = s − 1
r(a, s, b) = s + if a ≡ b then 1 else −1
sep(s) = 0
h(∅) = ∅
h(x) = {max x}

Ansdist = IN
dist = (d, i, r, sep,h) where

d(a, s) = s + 1
i(s, b) = s + 1
r(a, s, b) = s + if a ≡ b then 0 else 1
sep(s) = |s|
h(∅) = ∅
h(x) = {min x}

for j = 0 to n do

for i = j to 0 do

match[i, j] = inner[i + 1, j − 1] + if wi+1 ≡ wj then 0 else 1

pal[i, j] = min{match[i, j], del[i + 1, j] + 1, ins[i, j − 1] + 1}

del[i, j] = min{match[i, j], del[i + 1, j] + 1}

ins[i, j] = min{match[i, j], ins[i, j − 1] + 1}

inner[i, j] = min{j − i, pal[i, j]}

�

�

� �����

� ���	�

� �����

� �
� �

� ��� ��
�

�����

� � �

� ���

� �
� �

� �
���

� �����

� �
���

� ��� �

� ��� �����

��� � �

� ���

� �
�

�

�  ��"!

�

� #��"!

!

�

�  ��  �$�%

ε

�  ��

� #��

� &��

� � �

� #'�

�  ��

�

�  (� �

� #'�"!

!

!

�

�  (�  $�%

ε

�  (�

� #'�

� &
�

� � �

� #��

�  (�

Figure 4.13: Top: Example yield grammar and two evaluation algebras. The axiom symbol
is pal, and char denotes an arbitrary character. Middle: The corresponding recurrences
specialized for algebra dist. For lack of space, the initialization equations are omitted.
Bottom: Four candidate structures in the search space for the best approximate separated
palindrome structure for the string “sassafras”. Under algebra dist the candidates evaluate
to scores (from left to right) 7, 5, 4 and 3.



4.5. TABLE DESIGN 89

number of alternative palindromic structures for a given string becomes very large. Using
different scoring schemes, we may formulate the optimization objectives of maximizing self-
similarity, or minimizing differences, with slightly different applications.

Figure 4.13 collects our formulation of the approximate separated palindrome example in
the ADP framework. It shows (top left) the yield grammar defining approximate, separated
palindromic structures. Recall that any string can be parsed as such a palindrome in many
ways, with the evaluation algebra determining the best palindromic structure. Four candi-
dates for the string “sassafras” are shown in the bottom part of the figure. Two evaluation
algebras are given (top right), algebra sim maximizing self-similarity, and algebra dist min-
imizing differences. The middle part of Fig. 4.13 shows the explicit recurrences derived from
the grammar and algebra dist.

4.5.2 Optimal tabulation

In this section we describe how to determine the nonterminals whose results need to be
stored in dynamic programming tables. We begin with the best possible runtime for a given
yield parser.

When all nonterminal symbols are tabulated, the runtime efficiency of the tabulating yield
parser is known. It depends on the width of the grammar:

Definition 4 (Width of productions and grammar) Let t be a tree pattern, and let k be the
number of nonterminal or lexical symbols in t whose yield size is not bounded from above. We
define width(t) = k−1. Let Pv = {t|v → t ∈ P}. We define width(v) = maxt∈Pv

{width(t)}
and width(G) = maxv∈V {width(v)}.

In this case, the execution time is O(n2+width(G)) [17]. This implies minimal runtime, but
maximal space consumption, and is what we want to improve upon by a more clever table
design.

In Fig. 4.13, middle part, we show the recurrences that implement the tabulating yield
parser for the example grammar. Efficiency analysis in this case is simple. With all inter-
mediate results stored in the five tables match, . . . , inner, the runtime is solely determined
by the outer for-loops which leads to an execution time of O(n2). In case of productions
with width(v) ≥ 1, for example v → N(string, v), the recurrence equations and the even-
tual implementation of the corresponding parsers would contain additional loops for moving
subword boundaries resulting in optimal runtimes of O(n3) or more. While tabulating ev-
erything yields optimal efficiency in terms of execution time, it may require more space than
really needed. Conversely, the yield parser may implement a parser for each nonterminal
symbol as a recursive function – resulting in low space requirements for tables (none, to be
precise), but exorbitant inefficiency, and most likely a runtime stack overflow. The solution
is to assign a table configuration to the grammar that achieves an optimal balance.



90 CHAPTER 4. COMPILING ADP

Efficiency analysis for a given table configuration

In order to make more precise statements about the usage of tables and recursive functions,
we define:

Definition 5 (Table configuration) Let G = (V, Z, P ) be a tree grammar over Σ and PG the
corresponding yield parser. A table configuration ϑ is a subset ϑ ⊆ V denoting that for all
q ∈ ϑ the parser pq is to be tabulated and for all q 6∈ ϑ the parser pq is to be implemented as
a recursive function. P ϑ

G shall represent the yield parser PG for yield grammar (G, y) under
table configuration ϑ. P(V ) denotes the set of all possible table configurations.

Note that the semantics of the tabulating yield parsers P ϑ
G are equivalent for all ϑ ∈ P(V ).

We will distinguish between good and optimal table configurations.

Definition 6 (Good and optimal table configurations) A configuration is good if it uses the
minimal number of tables that leads to polynomial runtime. A configuration is optimal if it
uses the minimal number of tables that leads to a runtime with the best possible polynomial
degree.

Note that our notion of optimality includes a space-time trade-off. A grammar with a
good table configuration may still contain a subgrammar whose dependencies raise runtime
complexity to an arbitrary (but fixed) polynomial degree. Extra tables can be assigned to
reduce this degree – hence an optimal configuration, in general, holds more tables than a
good one. For example, the second configuration shown in Fig. 4.14 is good (using 1 table),
while the first configuration is optimal (using 3 tables).

Definition 7 (Dependence mapping) Let S = V ∪ L be the set of nonterminal and lexical
symbols in G. The dependence mapping u for q ∈ V and input length n is given by u(q, n) =
(d1, . . . , dr) where each dk, 1 ≤ k ≤ r represents a dependence property dk ∈ S × IN such
that dk = (qk, iqk

+ jqk
) if and only if the parser pq(0, n) uses the result of pqk

(iqk
, n− jqk

).
For convenience, we simply denote (qk, sqk

) ∈ u(q, n).

Theorem 2 The runtime of an ADP algorithm implemented by a tabulating yield parser
P ϑ
G on input w of length n is given by r(P ϑ

G , n) where:

r̄(ϑ, q, 0) = 1 (4.6)

r̄(ϑ, q, n) =
∑

(q′,sq′ )∈u(q,n)











1 for q′ ∈ L

1 for q′ ∈ V, q′ ∈ ϑ

r̄(ϑ, q′, n− sq′) otherwise

(4.7)

r(ϑ, q, n) =

{

n2 · r̄(ϑ, q, n) for q ∈ ϑ

r̄(ϑ, q, n) otherwise
(4.8)

r(P ϑ
G , n) = O(max

q∈V
r(ϑ, q, n)) (4.9)



4.5. TABLE DESIGN 91

Proof. The dependence mapping u(q, n) provides all calls to lexical or nonterminal parsers
in the calculation of parser pq on input length n. Without loss of generality we assume that
each parser terminates at an input of length 0 (4.6). Lexical parsers and table accesses (4.7)
can be performed in constant time. In case of a non-tabulated parser pq′ (4.7), the parser
pq′ is called with an input length reduced by sq′ . The outer for-loops for a tabulated parser
lead to a minimal effort of at least O(n2) (4.8) and the overall runtime of the algorithm
(4.9) is determined by the parser with the maximal asymptotic runtime. �

This of course gives sparse information about a closed form for r(P ϑ
G , n). All we know is that

if all productions are tabulated, the runtime is solely affected by the constants in (4.7) and
the outer for-loops of (4.8). In case of non-tabulated productions, (4.7) is defined recursively,
which makes reasoning about complexity more difficult. Tabulating no production at all will
in most cases lead to an exponential runtime. In the following we will investigate how to find
the minimal numbers of tables needed to achieve a polynomially bounded runtime r(P ϑ

G , n).

Staying polynomial

The number of dependences for a parser pq is bounded by |u(q, n)| = O(nwidth(q)). Therefore,
r(P ϑ
G , n) can only become exponential in the presence of recursive calls between parser

functions (Eq. 4.7).

For the following developments it is convenient to introduce some terminology for graphs:
A directed graph G = (V, E) is given by a nonempty set V = {v1, . . . , vs} of vertices and
a set E = {e1, . . . , em} of edges consisting of ordered pairs of elements of V . A directed
graph with multiple edges is called a directed multigraph with edges given as a multiset E.
A loop is an edge connecting a vertex with itself. In the following we only consider directed
multigraphs with loops allowed which we will simply call graphs. In a weighted graph each
edge ei is also associated with a weight w(ei).

A directed walk is a sequence π = v0e1v1e2 . . . elvl, where vi ∈ V, ej ∈ E for 0 ≤ i ≤ l, 1 ≤
j ≤ l, and each edge ej is directed out of vertex vj−1 and directed into vertex vj . Note that
the edges and vertices in π are not necessarily distinct. The length of a walk is the number
of edges in the sequence and is denoted by l(π). The weight of a walk is the sum of the

weights of its edges and is denoted by w̃(π) =
∑l(π)

i=1 w(ei).

A circuit is a closed walk with v0 = vl and all edges distinct. Under this definition a loop is
also a circuit. Two circuits are distinct if one is not a cyclic permutation of the other. The
circuit degree δ(v) of a vertex v shall be the number of distinct circuits containing v. We
define the circuit degree of a graph G as ∆(G) = maxv∈V δ(v). A circuit which contains no
vertex more than once (apart from the initial one), is called elementary.

The dependence mapping given by u for a yield parser P ϑ
G can be represented by a weighted

directed dependence graph G with the nonterminal set V as vertex set and an edge from q

to qk with weight sqk
for each (qk, sqk

) ∈ u(q, n). Such a graph represents all dependences,



92 CHAPTER 4. COMPILING ADP

regardless whether by table access or by function call. A graph limited to function call
dependences can be derived by restricting the edge set to edges directed into vertices from
V \ϑ.

In the following we restrict the analysis to grammars G with width(G) = 0. This leads
to parsers with constant dependence, i.e. all references to parser functions have the form
pq(i + iq, j − jq), with iq , jq ∈ IN and iq, jq ≥ 0. This restriction is necessary in order to
obtain graphs that are independent from the input length n contained in the dependence
mapping u.

Definition 8 (Dependence graph) Let P ϑ
G be a yield parser for yield grammar (G, y) under

table configuration ϑ and let u be the corresponding dependence mapping. The dependence
graph G(P ϑ

G ) is given by the grammar’s nonterminal set V as vertex set and edges E =
{e1, . . . , em}. Edge ei = (q, qk) with w(ei) = sqk

is in E if and only if qk 6∈ ϑ and (qk , sqk
) ∈

u(q, n). For convenience, we denote G for G(P ϑ
G ).

The use of the dependence graph is influenced by [28] where such graphs are used to represent
systems of uniform recurrence equations. Figure 4.14 shows three graphs with different table
configurations and circuit degrees ∆(G) for the palindrome example.

G

1

4

0 2

1

3

1

5

2

0

1

0

1

0

1

4

0 2

1

3

1

5

2

0

1

0

1

0

1

4

0 2

1

3

1

5

2

0

1

0

1

0

ϑ {1, 2, 3} {4} {3}

∆(G) 0 1 3

r(P ϑ
G , n) O(n2) O(n3) O(2n)

Figure 4.14: Three dependence graphs for the yield grammar of Example 4.5.1, with cor-
responding table configurations ϑ and circuit degrees ∆(G). The vertices are numbered as
follows: 1 → pal, 2 → del, 3 → ins, 4 → match, 5 → inner. Table access dependences are
drawn as dotted edges. The runtime of the yield parser PG under table configuration ϑ is
denoted by r(P ϑ

G , n).

Each edge in the dependence graph represents a function call between two parser functions.



4.5. TABLE DESIGN 93

A walk π in the graph can therefore be interpreted as a sequence of consecutive function
calls where the weight w̃(π) of the walk is the length of the “consumed” input and the length
l(π) is the number of required function calls.

This leads to the following relation between the runtime of a yield parser and its dependence
graph:

Theorem 3 Let P ϑ
G be a tabulating yield parser with corresponding dependence graph G.

Then, P ϑ
G has polynomial runtime if and only if ∆(G) ≤ 1.

Proof. If there is no vertex on at least two different circuits, each recursive function is called
at most once for each combination of parameters, such that the runtime is polynomial. If
there is such a vertex v, a call on v can trigger two recursive calls to v. Since the recursion
depth is linear, this leads to O(2n) calls, and the runtime is exponential. �

A more detailed proof of Theorem 3 can be found in Appendix A.

NP-completeness of table design

Theorem 3 gives a convenient property to distinguish between polynomial and exponential
runtimes of a tabulating yield parser. In order to find good table configurations, we need
to search for configurations that lead to dependence graphs with ∆(G) ≤ 1 while using a
minimal number of tables.

A simple algorithm is to systematically test all possible table configurations for their impact
on the number of circuits in the dependence graph. Such approach would be exponential
in the number of nonterminal symbols, so the question arises whether a better algorithm
exists.

Graph theory is a stomping ground for NP-complete and harder problems and provides a
rich theory on these kinds of questions. And indeed, we can utilize a powerful result from
graph theory to give an answer to the question stated above:

Theorem 4 (NP-completeness of good table design) Finding the minimal number of tables
to prevent exponential runtime of an ADP algorithm implemented by a tabulating yield
parser PG is NP-complete.

Proof. Recall the construction of the dependence graph in Definition 8. The edge set E for
the minimal table configuration ϑ = ∅ represents all dependences between parsers for the
situation that no results are tabulated. Adding a table for the parser pq to the configuration
results in deletion of all edges directed into the corresponding vertex q. Obviously, for the
number of circuits in the graph this has the same effect as deleting the vertex q itself. This
leads to the observation that finding the minimal number of tables to prevent exponential
runtime is equivalent to finding the minimal number of vertices which must be deleted from



94 CHAPTER 4. COMPILING ADP

the dependence graph such that the resulting graph contains no vertex which is part of two
or more circuits. And this is exactly a classic node-deletion problem:

For a fixed graph property Π, find the minimum number of nodes (or vertices) which must
be deleted from a given graph so that the result satisfies Π. [29]

It was shown in [29] that if Π is a “nontrivial” property which is “hereditary” on induced
subgraphs, then the node-deletion problem for Π is NP-hard. Furthermore, if testing for Π
can be performed in polynomial time, then the node-deletion problem for Π is NP-complete.

In our application, the property Π is: the graph contains no vertex which is part of two or
more circuits. To finish the proof, we show that Π satisfies the properties claimed above. A
graph property is nontrivial if infinitely many graphs satisfy it and infinitely many graphs
fail to satisfy it. This is clearly given for Π. A property is hereditary if for a given graph
satisfying Π, every node-induced subgraph also satisfies Π. It is obvious that all subgraphs
of a graph containing no vertex being part of two or more circuits retain this property.
Finally, Π can be tested for in polynomial time. A simple algorithm is to calculate all
strongly connected components of the graph – which is linear in the number of vertices and
edges [52] – and to check whether each of them is either a single vertex or an elementary
circuit – which is linear as well. Hence, finding the minimal number of tables to prevent
exponential runtime is NP-complete. �

Of course, in practical applications we are mostly interested in the optimal configura-
tions, not necessarily in the good ones. We can use the same approach to show the NP-
completeness of the problem of finding optimal configurations.

Theorem 5 (NP-completeness of optimal table design) Finding the minimal number of
tables that are necessary to achieve the best possible asymptotic runtime of an ADP algorithm
implemented by a tabulating yield parser PG is NP-complete.

Proof. The optimal execution time of a yield parser PG with width(G) = 0 is O(n2). This is
clear, since when all parsers are tabulated, the dependence graph is empty. Circuits in the
corresponding dependence graph, arising from non-tabulated productions, represent table
configurations that lead to suboptimal runtimes of at least O(n3). Therefore, in order to
obtain optimal runtime for the algorithm, the dependence graph must be made cycle free.
Achieving this by the minimal number of tables is equivalent to the node-deletion problem
for acyclicity of a directed graph. And this is, as expected, also NP-complete [29]. �

In the course of proving Theorems 4 and 5, we have restricted the yield grammars considered.
Our results, however, pertain to general yield grammars as well, because (1) arbitrary yield
grammars contain the restricted ones as a subclass, such that their table design problem is
at least NP-hard. (2) Testing goodness or optimality of a given table configuration works
as described earlier also in the general case, hence NP-completeness is retained.



4.5. TABLE DESIGN 95

A pragmatic implementation strategy

Motivated by the above NP-completeness results, we present a pragmatic approach to the
table design problem. It uses annotations by the programmer, preprocessing analyses, and
a brute force algorithm.

The programmer’s annotation distinguishes between two types of nonterminal symbols:
The ones that shall be tabulated, and the ones that shall be implemented as nontabulated
recursive functions. We denote them ϑa and %a, respectively.

Similarly, we consider two additional sets of nonterminals, ϑp and %p, derived from prepro-
cessing phases. We use different phases, depending on whether we search for good or for
optimal configurations:

Good configurations. Productions having more than one self-reference need to be tabulated

in any case: ϑp = {v|v ∈ V, ∆(G(P
V \{v}
G )) > 1}. Conversely, nonterminals not contained in

any circuit can by no means be responsible for exponential runtime: %p = {v|v ∈ V, δ(v) = 0}
with G = G(P ϑa∪ϑp

G ).

Optimal configurations. We derive the best possible polynomial degree by calculating the
runtime for a full table configuration: ropt = r(P V

G , n) (see Theorem 2). When not tabulated,
even a single self-recursive production or a production containing an inner loop can be
responsible for an additional runtime factor. We identify these candidates and mark them

for tabulation: ϑp = {v|v ∈ V, r(P
V \{v}
G , n) > ropt}. Clearly, nonterminals with a constant

runtime need no tabulation: %p = {v|v ∈ V, r(ϑa ∪ ϑp, v, n) = O(1)}.

The remaining nonterminals are free for optimization by the brute force approach: F =
V \{ϑa∪%a∪ϑp∪%p}. Let Ω be a predicate on table configurations that determines whether
the configuration is relevant for optimization at all. Corresponding to Theorem 3, we use
Ω(ϑ) = ∆(G(P ϑ

G )) ≤ 1 for good configurations and Ω(ϑ) = r(P ϑ
G , n) ≡ ropt for the optimal

ones.

Let ϑi = ϑa ∪ ϑp be the initial configuration. Then, Θ = {ϑ ∪ ϑi|ϑ ∈ P(F ), Ω(ϑ ∪ ϑi)}
describes the set of configurations satisfying the predicate and Θmin = {ϑ|ϑ ∈ Θ, |ϑ| =
minc∈Θ|c|} describes the corresponding minimal configurations. Our brute force algorithm
actually enumerates these sets and tests for minimality.

Should this strategy not be effective (due to computational effort for Θmin), one must restart
with a more detailed annotation by the programmer.

In the implementation, we must also deal with inner loops arising from productions with
width(v) ≥ 1, which played no role in the NP completeness proofs. During the construction
of the dependence graphs we represent dependences from inside inner loops by two edges
instead of a single one. Since our testing criterion is ∆(G) ≤ 1, this ensures that all
configurations with circuits containing an inner loop are rejected.



96 CHAPTER 4. COMPILING ADP

Practical experience

The table design problem studied here mathematically arises in practice only when the
algorithmic task at hand has a certain minimal level of sophistication. To support our claim
of practical relevance, we give a short report on such an application. Our largest ADP-
program so far is pknotsRG [45, 39], which predicts RNA secondary structures including
the so-called pseudoknots. Its time and space requirements are O(n4) and O(n2). It uses
a yield grammar with 47 nonterminal symbols. The productions split up in a total of
140 alternatives, which indicates the complexity of the case analysis involved. Therefore,
space does not permit to explain the algorithm here. We show the dependence graphs for
three different table configurations in Figures 4.15 to 4.17. The original implementation
(Fig. 4.15) – developed using manual table design – has a configuration of 17 tables. With
moderate annotation, our strategy derived good configurations of 4 tables (Fig. 4.16) and
optimal configurations of 12 tables (Fig. 4.17).

Comparing the hand-made to the optimal design, we found that while saving nearly 30%
space, the runtime of the optimized implementation increased by 19% – the constant factor
due to the additional recursive function calls. In many applications in the bioinformatics
domain, including this one, available space is the limiting factor. In such cases, one is
thankful to accept a small slowdown in exchange for the ability to handle larger input data.

4.6 Interface creation

To this point we have given a detailed description of the translation of ADP programs to
an imperative language like C. What is still missing is the generation of a suitable interface.
In the embedded Haskell version this is no problem. The embedded version is typically
used with the Haskell interpreter hugs or with the Haskell compiler ghc. In case of hugs the
interface is provided by the interface of the interpreter. Here the user can call every function
of the program directly from the hugs interface. In case of ghc, the ADP programmer
has to implement the user interface directly in Haskell. Since the ADP compiler does not
understand full Haskell, both approaches are not suitable for automated interface generation.

So far, three published ADP programs were compiled with the help of the ADP compiler:
pknotsRG, RNAshapes, and RNAhybrid. The interfaces for these programs were imple-
mented by hand in C. Figure 4.18 shows the pknotsRG interface. The RNAshapes interface
is described in detail in Appendix B.2. The implementation of such interfaces is time
consuming and error-prone. In the following, we describe how to generate such interfaces
automatically.

The first thing to note is that a typical command line interface consists of several standard
components:

• Standard options like -h for help, -v for the current version, and -f for file input



4
.6

.
IN

T
E

R
F
A

C
E

C
R

E
A
T

IO
N

9
7

F
ig

u
re

4
.1

5
:

D
ep

en
d
en

ce
g
ra

p
h

fo
r
p
kn

o
tsR

G
–

m
a
n
u
a
l
ta

b
le

d
esig

n
(1

7
ta

b
les).

T
h
is

ta
b
le

co
n
fi
g
u
ra

tio
n

lea
d
s

to
tim

e
a
n
d

sp
a
ce

req
u
irem

en
ts

o
f

O
(n

4)
a
n
d

O
(n

2).
T

h
e

ta
b
u
la

ted
n
o
n
term

in
a
ls

a
re

sh
ow

n
a
s

n
o
d
es

in
d
o
tted

ova
ls;

th
eir

ca
llin

g
a
rcs

a
re

a
lso

d
o
tted

.

struct

edangle

closed

knot

structB

edangleB

closedB

stack1 hairpin leftBrightB iloop multiloop

pknot

stack1BleftBB rightBBiloopB multiloopB

inloop ml_components

loopend

block

comps

coax dangle

inloopB ml_componentsB

loopendB

blockB

compsB

coaxB dangleB

pknot_int

stack

getbeta front middleback

stackBstacknrg

stack_wb front2 midback2

emptystrand singlestrand



9
8

C
H

A
P

T
E

R
4
.

C
O

M
P

IL
IN

G
A

D
P

F
ig

u
re

4
.1

6
:

D
ep

en
d
en

ce
g
ra

p
h

fo
r

p
kn

o
tsR

G
–

g
o
o
d

ta
b
le

d
esig

n
(4

ta
b
les).

T
h
is

ta
b
le

co
n
fi
g
u
ra

tio
n

lea
d
s

to
tim

e
a
n
d

sp
a
ce

req
u
irem

en
ts

o
f
O

(n
7)

a
n
d

O
(n

2),
resp

ectiv
ely.

A
lb

eit
p
o
ly

n
o
m

ia
l,

th
e

ru
n
tim

e
o
f
O

(n
7)

is
su

rely
u
n
a
ccep

ta
b
le

fo
r

p
ra

ctica
l
u
sa

g
e.

struct

edangle

closed

knot

structB

edangleB

closedB

stack1 hairpin leftBrightB iloop multiloop

pknot

stack1BleftBB rightBBiloopB multiloopB

inloop ml_components

loopend

block

comps

coax dangle

inloopB ml_componentsB

loopendB

blockB

compsB

coaxB dangleB

pknot_int

stack

getbeta front middleback

stackBstacknrg

stack_wb front2 midback2

emptystrand singlestrand



4
.6

.
IN

T
E

R
F
A

C
E

C
R

E
A
T

IO
N

9
9

F
ig

u
re

4
.1

7
:

D
ep

en
d
en

ce
g
ra

p
h

fo
r
p
kn

o
tsR

G
–

o
p
tim

a
l
ta

b
le

d
esig

n
(1

2
ta

b
les).

T
h
is

ta
b
le

co
n
fi
g
u
ra

tio
n

lea
d
s

to
tim

e
a
n
d

sp
a
ce

req
u
irem

en
ts

o
f

O
(n

4)
a
n
d

O
(n

2),
resp

ectiv
ely,

th
e

sa
m

e
a
s

th
e

m
a
n
u
a
l
d
esig

n
,
b
u
t

u
ses

o
n
ly

a
b
o
u
t

7
0
%

o
f
th

e
ta

b
le

sp
a
ce.

struct

edangle

closed

knot

structB

edangleB

closedB

stack1 hairpin leftBrightB iloop multiloop

pknot

stack1BleftBB rightBBiloopB multiloopB

inloop ml_components

loopend

block

comps

coax dangle

inloopB ml_componentsB

loopendB

blockB

compsB

coaxB dangleB

pknot_int

stack

getbeta front middleback

stackBstacknrg

stack_wb front2 midback2

emptystrand singlestrand



100 CHAPTER 4. COMPILING ADP

Usage: pknotsRG [options] <input sequence> (or stdin)

Options:

-h Display this information

-m Use mfe strategy

-f Use enf strategy

-l Use loc strategy

-s Show suboptimals

-u no dangling bases (implies -s)

-o no suboptimals inside pknots (implies -s -l)

-e <value> Set energy range for suboptimals (kcal/mole)

-c <value> Set energy range for suboptimals (%) [10]

-n <value> Set npp-value [0.3]

-p <value> Set pkinit-value [9]

-k <value> Set maximal pknot-length

-v Show version

Figure 4.18: pknotsRG interface

• Options used for setting the value of a variable. For example -e for setting the subop-
timal energy difference in an RNA program.

• Switches to choose a program mode.

• Switches to choose a boolean value (like -u or -o in the pknotsRG interface).

In the following we describe how to represent such an interface. We used XML as format,
since XML is very suitable to describe structured data. Moreover, a huge number of tools
and programming frameworks for XML exists, hence it is very convenient to work with
XML. Figure 4.19 shows an example.

The top-level element for command line options is the element option. This can be deeper
specified by the following six elements:

• help: gives an overview of the program command line options

• longhelp: gives a detailed description of the given command line option

• version: shows the current version number

• switch: a switch for a boolean variable

• set: an option to set the value of a variable

• switchset: an option to set a boolean variable and a value at the same time

• file: an option for file input

Figure 4.20 shows the C code generated from this XML file. This code uses the getopt-
library for processing of the command line options.

The XML file can be written by hand or it can be generated by the ADP compiler. Addi-
tionally the ADP compiler generates the following



4.6. INTERFACE CREATION 101

1 <option switch="h" text="Display this information">

2 <help />

3 </option>

4

5 <option switch="H" argtext="option" text="Display detailed information on <option>">

6 <longhelp />

7 </option>

8

9 <option switch="v" text="Show version">

10 <version />

11 </option>

12

13 <option switch="e" argtext="value" text="Set energy range (kcal/mol)">

14 <set var="traceback_diff" datatype="float" default="0" minval="0"

15 </option>

16

17 <option switch="w" argtext="value" text="Set window size">

18 <switchset var="window_size" swvar="window_mode"

19 defaultval="0" default="off" datatype="int" minval="1" />

20 </option>

21

22 <option switch="f" argtext="filename" text="Read input from file">

23 <file var="inputfile" />

24 </option>

Figure 4.19: Standard XML file



102 CHAPTER 4. COMPILING ADP

1 // Display detailed information on <option> (-H)

2 case ’H’:

3 if (optarg[0]==’-’) { manoptmode = ’-’; manopt = optarg[1]; }

4 else if (optarg[0]==’:’) { manoptmode = ’:’; manopt = optarg[1]; }

5 else { manoptmode = ’-’; manopt = optarg[0]; }

6 if (!interactive) printf("\n");

7 #include "RNAfold2-man.c"

8 if (!interactive) printf("\n");

9 opt->terminate = 1;

10 break;

11 // Show version (-v)

12 case ’v’:

13 printf("%s (%s)\n",PACKAGE_STRING,RELEASE_DATE);

14 printf("\n");

15 opt->terminate = 1;

16 break;

17 // Set energy range (kcal/mol) (-e)

18 case ’e’:

19 sscanf(optarg,"%f",&(opt->traceback_diff));

20 opt->traceback_diff = max(0, opt->traceback_diff);

21 if (interactive) printf("Energy range set to %.2f kcal/mol.\n", opt->traceback_diff);

22

23 opt->traceback_percent = 0;

24 break;

25 // Set window size (-w)

26 case ’w’:

27 if ((interactive) && (optarg[0] == ’-’)) {

28 printf("Window mode disabled.\n");

29 opt->window_mode = 0;

30 }

31 if (optarg[0] != ’-’) {

32 opt->window_mode = 1;

33 sscanf(optarg,"%d",&(opt->window_size));

34 opt->window_size = max(1, opt->window_size);

35 if (interactive) printf("Set window size to %d. Type -w - to disable.\n", opt->window_size);

36 }

37 break;

38 // Read input from file (-f)

39 case ’f’:

40 if (opt->inputfile) free(opt->inputfile);

41 opt->inputfile = mkstr(optarg);

42 break;

Figure 4.20: Example C code for interface



4.6. INTERFACE CREATION 103

• The C-framework for a complete C-program.

• A file input facility to read text- and fasta-files.

• A sliding window mode for RNA programs.

• An interactive mode. In this mode it is possible to enter input data and command
line options in an interactive fashion.

• A Make-file to compile the program. This is especially useful for ADP programmers
without knowledge in C programming.

Figure 4.21 shows an overview of the compilation process. Starting point in this example
is the file ElMamun.lhs. The ADP compiler (adpc) generates the XML-file ElMamun.xml

and the Make-file. The XML-file can then be edited by the user. With the call of make,
the adpc is called again, and it generates the main C file ElMamun.c and the C-modules
ElMamun seller.c, ElMamun buyer.c and ElMamun count.c (one for every algebra). These
module files are called from the main file ElMamun.c. Finally the Make-file calls the C
compiler (gcc) to compile the C files and link them into the binary program ElMamun.



104 CHAPTER 4. COMPILING ADP

Figure 4.21: Adpc framework



Chapter 5

Applications

This chapter describes RNAshapes, a non-trivial RNA analysis program developed using the
ADP method. In Section 5.2 we also give some benchmarks for a number of ADP program
compiled with the ADP compiler.

5.1 RNAshapes

This section is taken from [51].

5.1.1 Introduction

Abstraction is our major mental aid to master complexity. When we speak about functional
structures of RNA, we speak of long hairpins for miRNA precursors, of clover leaf struc-
tures for tRNA, of neighboring hairpins with attenuators, etc., and we often do not care
about individual base pairs or helix sizes. For programs comparing RNA structures, it has
long been suggested to represent larger structures as trees at different levels of detail [47]
(subroutine b2Shapiro in the Vienna RNA package [24]).

RNA structure prediction algorithms, however, are ignorant of abstraction and either deceive
us with a single, minimum free energy prediction, or overwhelm us with a plethora of near-
optimal structures, most of which are very similar and thus redundant.

RNA shape abstraction maps structures to a tree-like domain of shapes, retaining adja-
cency and nesting of structural features, but disregarding helix lengths. Shape abstraction
integrates well with dynamic programming algorithms, and hence it can be applied during
structure prediction rather than afterwards. This avoids exponential explosion and can still
give us a non-heuristic and complete account of properties of the molecule’s folding space.

105



106 CHAPTER 5. APPLICATIONS

Rather magically, some long and hard-studied problems become easy.

So far, we have approached three problems with the use of abstract shapes:

1. Computation of a small set of representative structures of different shapes, complete
in a well-defined sense [20].

2. Computation of accumulated shape probabilities [55].

3. Comparative prediction of consensus structures, as an alternative to the over-expensive
Sankoff Algorithm: RNAcast [40].

So far, the first two applications have only been available as implementations in the func-
tional programming language Haskell, with strong limitations on input sequence length.
RNAcast was only available as an online tool. Here, we describe a complete reimplemen-
tation of these approaches in the programming language C. This new implementation is
around 50-100 times faster than the original implementations, has lower memory require-
ments and can be used with significantly longer input sequences. It combines all three tools
in one single package. We also included a number of additional features.

In the following, we will shortly review the notion of abstract shapes, and explain where its
power comes from. We will then provide an overview of the problems that can be approached
in the new way.

5.1.2 The abstract shapes approach

An RNA shape is an abstract representation of an RNA secondary structure. It is inspired
by the dot-bracket representation known from the Vienna RNA package [24]. Consider
the following sequence and two secondary structures from its folding space in dot-bracket
representation:

AUCGGCGCACAGGACAUCCUAGGUACAAGGCCGCCCGUU

..(((.((..(((....))).(((.....))))))))..

..(((.....(((....))).(((.....)))..)))..

The shapes approach offers five abstraction levels – or shape types – ordered in their degree
of abstraction. Common to all levels is that they abstract from loop and stack lengths,
where unpaired regions are represented by an underscore and stacking regions by a pair of
squared brackets. This is the least abstract shape type 1, so the two example secondary
structures become:

[ [ [ ] [ ]]]

[ [ ] [ ] ]



5.1. RNASHAPES 107

The succeeding shape types gradually increase abstraction, ending in type 5, where no
unpaired regions are included and nested helices are combined. In this type, our example
structures are both represented as:

[[][]]

These abstractions form the basis of all applications of RNA abstract shape analysis. In the
following we give an overview of the main applications, all integrated in the new RNAshapes
package.

Shape representative analysis

Current RNA folding algorithms either calculate a single, minimum free energy prediction,
or a huge number of suboptimal structures, most of which are quite similar and therefore
redundant. With shapes, we abstract from the concrete secondary structures and only
consider classes of structures that fall into different shapes. The shape representative (in
short: shrep) of a shape is the structure with the minimum free energy inside a shape class.

Figure 5.1 shows an example program run inside the RNAshapes user interface with the
Natronobacterium pharaonis tRNA for alanine (gb: AB003409.1/96-167). The predicted
mfe-structure is one hairpin with internal loops, as depicted in Figure 5.1 on the left. The
biologically active structure is the clover-leaf structure (Figure 5.1 right). It would appear
at position 123 in the energy sorted list of 308 suboptimals, produced by RNAsubopt [57]
with an energy range of 5 kcal/mol above the mfe. Using RNAshapes, we get three shapes
in an energy range of 5 kcal/mol, of which the rank 3 shrep is the clover-leaf structure.

Shape probabilities

In [55], we extended the shapes approach to the computation of shape probabilities. The
probability of a shape is the sum of the probabilities of all structures that fall into this shape.
Several analyses indicate that this approach is quite effective. For example, an analysis of a
conformational switch shows the existence of two shapes with probabilities approximately
2
3 vs. 1

3 , whereas the analysis of a micro RNA precursor reveals the hairpin shape with a
probability near to 1.0 [55].

The new implementation contains three approaches for probability analysis, suitable for
different input sizes:

Complete probability analysis This implies a complete and non-heuristic analysis of
the folding space, where the computational effort depends only on the size of the shape
space, which is much smaller than the folding space. On a computer with 2GB main
memory, sequences up to a length of around 300 bases can be processed. The following two
approaches relax this restriction.



108 CHAPTER 5. APPLICATIONS

Sampling shapes probability analysis The sampling shapes approach works in the
same manner as Ding and Lawrence’s Sfold program [6]. In each step of the recursive
backtracing procedure, base pairs and the structural element they belong to are sampled
according to their probability, which is obtained from the partition function [31]. For each
sample, we calculate its corresponding shape. The shape probability then results from its
frequency in the sample space. A sample size of 1000 (as also used by the Sfold server)
is sufficient for high probability shapes. For details see [55]. The sampling approach is
computationally feasible with an input length of up to 1500 bases.

Fast high probability shape analysis The third option only calculates probabilities
for shapes with the lowest free energy shreps. These are often also the shapes of highest
probability (but not necessarily so). This mode is implemented as a two-step process.
In the first step, the lowest free energy shapes are calculated as in shape representative
analysis. Then, for each of these shapes, the probability is calculated individually. Since
these individual calculations have significant lower resource requirements than the complete
probability analysis, it is suitable for input sequences up to around 500 bases.

Consensus shapes

The well-known Sankoff algorithm [44] for simultaneous RNA sequence alignment and fold-
ing is currently considered an ideal, but computationally over-expensive method. Available
tools implement this algorithm under various pragmatic restrictions [30, 22]. See [11] for a
recent comparative evaluation of these and several further methods.

In [40], we proposed to redefine the consensus structure prediction problem in a way that
does not imply a multiple sequence alignment step. For a family of RNA sequences, our
method RNAcast explicitly and independently enumerates the near-optimal abstract shape
space, and predicts as the consensus an abstract shape common to all sequences. For each
sequence, it delivers the thermodynamically best structure that has this common shape.
Since the shape space is much smaller than the structure space, and identification of common
shapes can be done in linear time (in the number k of shapes considered), the method is
linear in the number s of sequences, yielding O(n3 · k · s) overall. Our evaluation shows that
the new method compares favorably with available alternatives [40]. It is particularly useful
on sequences with low conservation, where methods based on sequence alignment cannot be
employed. We have now integrated RNAcast into the RNAshapes package.

5.1.3 The RNAshapes package

In addition to the main modes of operation described above, the package offers a number
of convenient functions:



5.1. RNASHAPES 109

Figure 5.1: Predicted shreps for Natronobacterium pharaonis tRNA-ala in an energy range
of 5 kcal/mol above the mfe. This energy range holds 308 structures. The figure shows the
RNAshapes user interface for Microsoft Windows. The results of the current RNAshapes
analysis are shown in the program’s output area. To create a structure graph drawing, the
user can simply click onto the dot-bracket string of the desired result.



110 CHAPTER 5. APPLICATIONS

• Input sequences can either be single sequences, sequence files, or multi-sequence files
in fasta format. Additionally, interactive user input of sequences is supported.

• Graphical output of secondary structures in postscript format (implemented with pro-
gram code from the Vienna RNA package [24]).

• Complete suboptimal folding that handles dangling bases correctly.

• A sliding window function for processing whole genomes. Apart from RNAcast, this
option can be used with all analysis modes.

• Detailed options to modify the program output.

• Complete control of program functionality by command line options, useful for auto-
matic script processing.

• A graphical user interface for Microsoft Windows with convenient access to the com-
plete functionality of the package. It also offers an interactive visualization of struc-
tures from the program output (Figure 5.1). The appearance of these structure draw-
ings can be controlled in a very flexible manner (e.g. colors, sizes, fonts, orientation).

5.1.4 Conclusion

RNAshapes offers several powerful RNA analysis tools in one single software package. Due
to the new implementation in C, it is considerably more efficient than the previous separate
implementations. With the integrated graphical user interface the package offers enhanced
usability, especially for researchers not used to the command line, and hopefully reaches a
new community of users. See Appendix B for an exemplified introduction to the RNAshapes
interface.

5.1.5 Implementing the shapes representative analysis

The shape representative analysis is a combination of the three algebras shapes, mfe and
pretty. An obvious implementation is the application of the pair operator in the form shape
*** (mfe *** pretty). However, this is not suitable, since this combination calculates the
shape representatives for all shapes. So a hand-written choice function is needed here. One
problem of this implementation is that its calculation is very expensive. So for every table
element several calculations are necessary. First the shapes must be calculated and then for
every shape the corresponding shape representative. For larger inputs this is very time- and
space-consuming. Even a calculation based on hash-tables does not really improve efficiency.

Therefore we use a different, three-stage approach for the C implementation.



5.2. BENCHMARKS 111

1. In the first phase, only the results for algebra mfe are calculated. Here we have to deal
only with atomar results, so the implementation is very efficient (see also Section 4.4.5).
After this stage all table entries are filled with their corresponding mfe values.

2. In the second phase, all table entries relevant to the user-given energy range are
marked. This is implemented via a variant of the suboptimal backtrace. In this phase
all table entries lying on paths of the backtrace are marked and the difference value
of the current path is saved. When a cell is already visited, the stored difference value
is compared to the current difference value. Only when the current value is larger
than the stored one, the suboptimal path is followed further. This strategy is a lot
faster than a complete suboptimal backtrace, since most of the suboptimal paths can
be interrupted at early stages. After this phase all table entries relevant to the given
energy range are marked.

3. In stage 3 now the actual shape analysis is performed. This phase is relatively ex-
pensive, but since it only needs to be calculated for the cells marked in phase 2 it
is much faster than a complete shape analysis for every cell. The shape analysis is
implemented via a hash table where the shape serves as the hash key. So every shape
string is stored only once for the complete analysis.

5.2 Benchmarks

In the following, we give some performance results for four bioinformatics tools developed
using the ADP method. We used ghc 6.2 (with optimization option -O2) to compile the
Haskell embedded versions, and Sun Studio 10 (with option -xO5) for the compiled C
versions. The C versions were generated by the ADP compiler. All measurements were
performed on an Intel Xeon 2.8 GHz CPU with 2GB main memory, running Solaris 10.

5.2.1 RNAshapes

RNAshapes [20] predicts RNA secondary structures based on the so-called abstract shapes
method. Its time and space complexity is O(n3αn) and O(n2αn), where n is the length of
the RNA sequence, and α is typically close to 1, but depends on the chosen energy range
and shape abstraction.

ghc adpc
n time (s) MB time (s) MB

200 32.83 58 0.24 14
400 1212.55 684 1.81 22
600 out of memory 6.35 32
800 out of memory 13.96 51



112 CHAPTER 5. APPLICATIONS

5.2.2 RNAfold

RNAfold calculates secondary structures of RNAs [24]. Its time and space complexity is
O(n3) and O(n2). We have reimplemented RNAfold in ADP and compared the running
times for the three implementations. Column original shows the time and space require-
ments of the original RNAfold implementation.

ghc adpc original
n time (s) MB time (s) MB time (s) MB

200 18.41 16 0.10 13 0.07 1
400 264.06 90 0.90 14 0.37 3
600 2560.74 601 3.03 16 0.84 4
800 out of memory 7.15 22 1.70 5

5.2.3 pknotsRG

PknotsRG [39] predicts RNA secondary structures including (a subclass of) the so-called
pseudoknots. Its time and space complexity is O(n4) and O(n2), where n is the length of
the RNA primary sequence.

ghc adpc
n time (s) MB time (s) MB

200 100.46 36 0.93 12
400 1646.19 143 16.17 15
600 8731.38 327 78.16 20
800 28204.53 599 278.74 27

5.2.4 RNAhybrid

RNAhybrid [42] predicts hybridization sites of a short RNA molecule in a long one. Its
time and space complexity is O(s2n) and O(sn), where n is the length of the long RNA
sequence, and s is the length of the short one (kept fixed in the measurements).

ghc adpc
n time (s) MB time (s) MB

20000 378.88 74 1.79 31
40000 1219.47 143 3.63 57
60000 2556.32 206 5.46 85
80000 4299.91 284 7.19 142



5.2. BENCHMARKS 113

5.2.5 Conclusion

The experiments show that the programs generated by the ADP compiler run at least a hun-
dred times faster than their corresponding ghc versions. For some examples the speedup
can even go up to 800 (RNAfold). The memory savings are from factor 2 up to around 35.
Compared to the hand-implemented RNAfold program by I. Hofacker et. al. the automati-
cally compiled ADP version is only around 4 times slower and has memory requirements of
a factor of around 4.



114 CHAPTER 5. APPLICATIONS



Chapter 6

Outlook

In this work we have described how to automatically compile ADP programs to programs
in an imperative target language like C. On this basis, several other interesting topics can
be investigated.

Independence of Haskell. The traditional way to develop an ADP program is the fol-
lowing: First a prototype of the program is developed with the embedded version of the
ADP language in Haskell. This prototype is then compiled with the help of the ADP com-
piler. However, this way has a number of disadvantages (see also Section 1.4). The main
disadvantage is that the ADP programmer also has to be a good Haskell programmer. The
error messages generated by the Haskell implementations can be quite complex and under-
standing these messages can also be a challenge for experienced Haskell programmers. With
the development of the ADP type checker by Stefanie Schirmer we can now eliminate this
problem. Since the type checker knows much more about ADP than a Haskell system, it can
generate error messages specific to ADP programs. Another advantage of the independence
of Haskell is that we do not depend on the Haskell syntax anymore. We can then define a
suitable ADP language on our own. The definition of such an ADP language should be the
next step in the development of ADP.

ADP based on multisets. The original formulation of ADP uses sets of answers to a
DP problem, which are eventually implemented as lists. This creates a certain degree of
imprecision when multiplicity of solutions plays a role. Therefore, we will base the ADP
theory on multisets of answers, which is consistent with an implementation as lists as long
as we do not take advantage on their internal order of elements (work with G. Rote, in
progress).

Comparing ADP to Algebraic Path Problems. Dynamic programming problems
as addressed within the ADP framework can be seen as a special case of the extensively
studied algebraic path problems. See [43] for a review, and the recent book by Pachter

115



116 CHAPTER 6. OUTLOOK

and Sturmfels [35], which summarizes applications of the algebraic view to problems in
bioinformatics. Algebraic path problems are optimization problems over graphs defined via
a semiring structure (S,⊕,�), where S is the domain of scores, ⊕ the objective function
(such as minimization) applied when joining paths, and � is the function that combines
scores when extending paths. ADP is somewhat richer semantically, as every function in
an evaluation algebra is a separate instance of the � operation, which must satisfy the
semiring axioms, and may operate on several arcs simultaneously. As a consequence, the
optimal “path” is actually a tree. In the graph problem framework, the underlying graph
structure is usually given explicitly as input. In the ADP approach, the input is always
a sequence, and the graph structure remains implicit. For each problem instance, data
dependencies (paths) are determined according to the tree grammar. We are currently
investigating which mathematical observations from graph problems carry over to the ADP
approach, and which can be seen as extending algebraic graph problems towards easier
programming in specialized, but also more sophisticated application domains.

Complete handling of pair-operator. The pair operator is currently only supported
for the combination of two algebras. This suffices to compile algebras like pairmax ***

count or pairmax *** prettyprint. The combination of more than two algebras requires
some extensions to the compiler. The most common application of the pair operator is the
combination of a scoring algebra together with a pretty printing algebra. This is supported
by the compiler through the direct generation of backtracing code. This backtracing code is
much more efficient than the application of the pair operator. However, a complete support
of the pair operator would be very helpful.

ADP in hardware. A field programmable gate array (FPGA) is a semiconductor device
containing programmable logic components and programmable interconnects. FPGAs allow
to develop own special purpose processors in a cheap and convenient way. FPGAs are used
for a large number of applications and also for several bioinformatics projects. An interesting
research area now is to what extent the ADP compiler can be extended to automatically
generate a description of such an FPGA.

Parallelization. In times of multi-processor computers and multi-core processors, paral-
lelization is an interesting topic. It needs to be examined to what extent ADP programs
can automatically be compiled to allow parallel execution.

Code generation for GPUs. A Graphics Processing Unit (GPU) is a dedicated graph-
ics rendering device for personal computers. These GPUs work extremely parallel and can
process graphical data much faster than a general purpose CPU. In the last years it has
been tried to use this GPUs for other purposes than their original function. The website
http://www.gpgpu.org/ gives an overview of several possible applications. It is an inter-
esting question to what extent these GPUs can be used to execute ADP programs. For this
purpose the ADP compiler needs to generate special GPU code.

LATEX recurrences. Traditionally, DP programs are documented in the form of matrix
recurrences. The language of list comprehensions generated during the compilation can be



117

used to automatically translate the recurrences into LATEX equations.

Target code backends. The generated target language T L is very universal. With this
language it should be relatively easy to generate other languages than C. Due to its wide
spreading Java is certainly interesting. Another possible target language is Fortran. Fortran
is widely used in the area of scientific computing and it is said that Fortran programs are
quite more efficient than the corresponding C programs.



118 CHAPTER 6. OUTLOOK



Appendix A

Proof: P
ϑ
G has polynomial

runtime if and only if ∆(G) ≤ 1

The number of dependences for a parser pq is bounded by |u(q, n)| = O(nwidth(q)). Therefore,
r(P ϑ
G , n) can only become exponential in the presence of recursive calls between parser

functions (Eq. 4.7).

Definition 9 (Number of function calls) c(q, n) shall denote the overall number of function
calls between parser functions initiated by a parser pq on input length n. The total number
of function calls for a yield parser P ϑ

G on input length n is denoted by c(P ϑ
G , n).

Obviously, the execution time r(P ϑ
G , n) is polynomial if and only if c(P ϑ

G , n) is polynomial.
In order to distinguish between exponential and polynomial runtimes, we will concentrate
on the asymptotic behavior of c(P ϑ

G , n).

Each edge in the dependence graph represents a function call between two parser functions.
A walk π in the graph can therefore be interpreted as a sequence of consecutive function
calls where the weight w̃(π) of the walk is the length of the “consumed” input and the length
l(π) is the number of required function calls. Moreover, the number of walks in a graph can
be derived by the powers of the graph’s adjacency matrix A. Bringing together these two
observations, we get the following result for the asymptotic behavior of c(P ϑ

G , n).

Lemma 1 Let P ϑ
G be a tabulating yield parser with width(G) = 0 and corresponding de-

pendence graph G and adjacency matrix A. The asymptotic number of parser function calls
initiated by P ϑ

G on input length n is given by

c(P ϑ
G , n) = O(n ·N(An)) with N(A) = (

s
∑

i,j=1

|aij |
2)1/2 . (A.1)

119



120APPENDIX A. PROOF: P ϑ
G HAS POLYNOMIAL RUNTIME IF AND ONLY IF ∆(G) ≤ 1

Proof. Wlog. we assume that each parser terminates at input length 0. Since w̃(π) may not
exactly sum up to an input length n, we define the following approximation relation: For
π = v0e1v1e2 . . . elvl, w̃(π) ≈ n iff w̃(π) ≥ n and w̃(v0e1v1e2 . . . el−1vl−1) < n.

Let n be the input length and π a walk of weight w̃(π) ≈ n starting at vertex q. Then, π

represents one of possibly many chains of function calls started by parser pq on input length
n with the number of calls given by l(π). Defining Wq as the set of walks starting in q,
we get c(q, n) =

∑

π∈Wq
{l(π)|w̃(π) ≈ n}. Since all w(ei) are constant and independent of

n, for a walk π with w̃(π) ≈ n also holds l(π) = O(n). Therefore, we can equally state:
c(q, n) = O(

∑

π∈Wq
{l(π)|l(π) = n}). This eliminates the need for edge weights in the

dependence graph.

It is well known that the n-th power of A can be used to determine the number of distinct

walks in G, such that a
(n)
ij holds the number of walks from vertex i to vertex j of length n

[5, Th.1.9]. This implies c(q, n) = O(n
∑s

j=1 a
(n)
qj ). We assume that all nonterminal symbols

of P ϑ
G are reachable from the axiom. Therefore, each element a

(n)
ij represents a number

of function calls affecting the runtime of P ϑ
G . Then the following holds: n · maxi,j a

(n)
ij ≤

c(P ϑ
G , n) ≤ n

∑s
i,j=1 a

(n)
ij . Since maxi,j a

(n)
ij = O(

∑s
i,j=1 a

(n)
ij ), it follows that c(P ϑ

G , n) =

O(n
∑s

i,j=1 a
(n)
ij ).

N(A) denotes the Frobenius norm of the matrix A which is defined by N(A) = (
∑s

i,j=1 |aij |
2)1/2.

It follows from
∑s

i,j=1 |aij | = O(N(A)) that c(P ϑ
G , n) = O(n ·N(An)). �

With Lemma 1 we can now analyze the runtime of P ϑ
G by examining the asymptotic behavior

of the powers of the corresponding dependence graph’s adjacency matrix. A suitable result
was given by W. Gautschi in 1953. For convenience, we state his main theorem:

Theorem 6 (W. Gautschi [12]) Let A be a (real or complex) s × s matrix and suppose
that not all eigenvalues λv of A are zero. Denote by mv the multiplicity of λv in the minimal
polynomial of A and put

k = max
v=1,...,s;λv 6=0

mv

Then we have for a constant c > 0 depending only on A:

1 ≤
N(An)

(
∑s

v=1 |λv |2n)
1

2

≤ cnk−1 (n = 1, 2, . . . ) (A.2)

If all λv are zero, we have N(An) = 0 (n ≥ l, l = mv).

Here | · | denotes the complex modulus defined by |x + iy| =
√

x2 + y2. Following this
result, the eigenvalues λv have the largest impact on the asymptotic behavior of N(An).
For our purposes we will distinguish between three cases. The maximal multiplicity mv of



121

an eigenvalue λv of A is s, thus:

N(An) =











0 if all λv = 0

O(ns−1) if all |λv | ≤ 1

O(xn) if any |λv | > 1 (x > 1)

(A.3)

Given that c(P ϑ
G , n) = O(n ·N(An)), the existence of an eigenvalue |λv | > 1 of the depen-

dence graph’s adjacency matrix makes the difference between a polynomial and an expo-
nential runtime. To characterize graphs whose adjacency matrices have eigenvalues of the
properties stated in (A.3) we follow results given in [5] and [27]. We summarize them with
a short proof:

Lemma 2 Let G be a directed graph with multiple edges and loops and let λ1 be the eigen-
value of the adjacency matrix A of G with the largest modulus. Then,

1. ∆(G) = 0 iff λ1 = 0.

2. ∆(G) = 1 iff λ1 ≤ 1.

3. ∆(G) > 1 iff λ1 > 1.

Proof. Since A is non-negative, λ1 is real and non-negative [54, Th. 2.7]. The trace Tr(A) of
a matrix A is the sum of its diagonal elements. It is well known that Tr(A) =

∑s
i=1 λi and

Tr(An) =
∑s

i=1 λn
i (see e.g. [10, IV §5]). If G contains no circuit at all, then Tr(An) = 0

for any n. This proofs statement 1. If ∆(G) = 1, then Tr(An) ≤ s for any n. Therefore
∑s

i=1 λn
i ≤ s for any n which proofs statement 2. If ∆(G) > 1, then Tr(An) must increase

with n. Therefore, an eigenvalue λi > 1 must exist, since otherwise
∑s

i=1 λn
i ≤ s. �

Figure A.1 shows one example graph for each of the three cases. Altogether, we get the
following result, connecting the runtime of a tabulating yield parser with the cyclic structure
of its dependence graph:

Theorem 7 Let P ϑ
G be a tabulating yield parser with corresponding dependence graph G.

Then, P ϑ
G has polynomial runtime if and only if ∆(G) ≤ 1.

Proof. It follows from Lemmas 1,2 and Theorem 6 that c(P ϑ
G , n) is polynomial if and only if

∆(G) ≤ 1. Theorem 2 implies that the runtime of P ϑ
G is polynomial if and only if c(P ϑ

G , n)
is polynomial. �



122APPENDIX A. PROOF: P ϑ
G HAS POLYNOMIAL RUNTIME IF AND ONLY IF ∆(G) ≤ 1

G

1

4

0 2

1

3

1

5

2

0

1

0

1

0

1

4

0 2

1

3

1

5

2

0

1

0

1

0

1

4

0 2

1

3

1

5

2

0

1

0

1

0

ϑ {1, 2, 3} {4} {3}

∆(G) 0 1 2

A

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

0 0 0 1 0
0 0 0 1 0
0 0 0 1 0
0 0 0 0 1
0 0 0 0 0

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

0 1 1 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 0 1
1 0 0 0 0

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

0 1 0 1 0
0 1 0 1 0
0 0 0 1 0
0 0 0 0 1
1 0 0 0 0

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

λ1 0 1 1.47

N(A100) 0 2.83 4.55 · 1016

r(P ϑ
G , n) O(n2) O(n3) O(2n)

Figure A.1: Three dependence graphs for the yield grammar of Example 4.5.1, with cor-
responding table configurations ϑ, circuit degrees ∆(G), adjacency matrices A, largest
eigenvalues λ1 and the matrix norms N(A100). The vertices are numbered as follows:
1 → pal, 2 → del, 3 → ins, 4 → match, 5 → inner. Table access dependences are drawn
as dotted edges. Note that the edge weights are not represented in the adjacency matrices.
The runtime of the yield parser PG under table configuration ϑ is denoted by r(P ϑ

G , n).



Appendix B

RNAshapes

B.1 The RNAshapes interface by example

In the following, we give an exemplified introduction to the RNAshapes interface. All
sequence files used here can be found in the directory examples of the RNAshapes distri-
bution1.

B.1.1 Shape representative analysis

As an example sequence, we use the alanine tRNA of Natronobacterium pharaonis (gb:
AB003409.1/96-167). It is contained in sequence file pharaonis.seq in the examples direc-
tory. With option -f, we specify the name of the input file for RNAshapes. When given no
additional parameters, RNAshapes works in shape representative analysis mode:

RNAshapes -f pharaonis.seq

Alternatively, we can also call RNAshapes directly with the sequence:

RNAshapes GGGCCCAUAGCUCAGUGGUAGAGUGCCUCCUUUGCAAGGAGGAUGCCCUGGGUUCGAAUCCCAGUGGGUCCA

This calls both give the following result:

GGGCCCAUAGCUCAGUGGUAGAGUGCCUCCUUUGCAAGGAGGAUGCCCUGGGUUCGAAUCCCAGUGGGUCCA

-35.90 (((((((((((((((.((((.....((((((.....)))))).))))))))))).........)))))))). []

1Download from http://bibiserv.techfak.uni-bielefeld.de/rnashapes/.

123



124 APPENDIX B. RNASHAPES

The predicted mfe-structure is one hairpin with internal loops. In default setting, RNAshapes
considers the energy range 10% above the mfe. In this example, all structures in this energy
range (-35.90 to -32.31) fall into the hairpin shape [], and the printed structure is the best
(i.e. with lowest energy) structure of this shape class. This is the shape representative
structure (in short: shrep).

To increase the energy range, we can use the switches -e (for absolute difference above the
mfe), or -c (for a percent value above the mfe). Let’s try with option -e 5:

RNAshapes -f pharaonis.seq -e 5

GGGCCCAUAGCUCAGUGGUAGAGUGCCUCCUUUGCAAGGAGGAUGCCCUGGGUUCGAAUCCCAGUGGGUCCA

-35.90 (((((((((((((((.((((.....((((((.....)))))).))))))))))).........)))))))). []

-32.20 ((((((((.....((.((((.....((((((.....)))))).))))))(((.......))).)))))))). [[][]]

-31.70 ((((((...((((.......)))).((((((.....)))))).....(((((.......))))).)))))). [[][][]]

This gives three results. The biologically active structure of the alanine tRNA is the clover-
leaf structure, the third result of the above call.

By default, RNAshapes uses the most abstract shape type (type 5). The shape type can
be changed with option -t. For example, the same analysis with shape type 3 gives the
following results:

RNAshapes -f pharaonis.seq -e 5 -t 3

GGGCCCAUAGCUCAGUGGUAGAGUGCCUCCUUUGCAAGGAGGAUGCCCUGGGUUCGAAUCCCAGUGGGUCCA

-35.90 (((((((((((((((.((((.....((((((.....)))))).))))))))))).........)))))))). [[[[]]]]

-33.20 (((((((((((((((.(((...((.((((((.....)))))))))))))))))).........)))))))). [[[[[]]]]]

-32.20 ((((((((.....((.((((.....((((((.....)))))).))))))(((.......))).)))))))). [[[[]]][]]

-31.90 ((((((..........((((.....((((((.....)))))).))))(((((.......))))).)))))). [[[]][]]

-31.70 ((((((...((((.......)))).((((((.....)))))).....(((((.......))))).)))))). [[][][]]

With option -Z, we can tell RNAshapes to color all dotbracket and shape strings in the out-
put such that corresponding structural elements have the same color in both representations.
This is especially useful for examining and learning the different shape types.

RNAshapes -f pharaonis.seq -e 5 -t 3 -Z

To get a more visual impression, we can also generate structure graphs of these results with
option -g. As parameter, -g receives the number of graphs that should be generated:

RNAshapes -f pharaonis.seq -e 5 -g 3

This call generates the postscript files rna 1.ps, rna 2.ps, and rna 3.ps (Figure B.1).

So far, we have only entered a single sequence as input for RNAshapes. In practice, multiple
sequence files are often more convenient. RNAshapes supports the fasta file format. We call
RNAshapes with option -f and the example file random.fasta, that contains two random
sequences:



B.1. THE RNASHAPES INTERFACE BY EXAMPLE 125

G
G
G
C
C
C
A
U
A

G
C

U
C

A
GU

G
G

U
AGAG

U
GC
C
U
C
C
U

U
U

G C
A

A
G
G
A
G
G

A

U
G
C
C
C
U
G
G
G
U
U
C

G A A
U
C

CCA
G
U
G
G
G
U
C
C
A

[] energy: -35.90

G
G
G
C
C
C
A
UA

G
C
UCA

GUG
G

U
AGAG

U
GC
C
U
C
C
U

U
U

G C
A

A
G
G
A
G
G

A

U
G
C
C
C
U

G G G
U U

C
G

AAU
CCC

A
G
U
G
G
G
U
C
C
A

[[][]] energy: -32.20

G
G
G
C
C
CAU

A
GCUC

AGU
G
G

U A
G A G U

G
C
C
U
C
C
U

U
U

G C
A

A
G
G
A
G
GAUGC

C
C U G G G

U U
C
G

AAU
CCCAG

U
G
G
G
U
C
C
A

[[][][]] energy: -31.70

Figure B.1: Postscript structure graphs generated with option -g

RNAshapes -f random.fasta

>random1

AGUCUUGACGGUCGCAGCCGUCUCGCGUGGGGCCGCGUCUUUAGGGAUCCAAGGCAUGAGAAUUGAUCGU

-19.30 .((((((.(((((.((((......)).)).))))).((((....)))).))))))............... [[][]]

-18.70 .......((((((((((((((((((((((....))))).....)))))....))).)).....))))))) []

-18.60 .((((((.(((((.((((......)).)).))))).((((....)))).))))))..((.......)).. [[][]][]

>random2

UUUGAAUAUCAGCUCAACAGGCAACGGUCCGGUGUAAUCUUUCUGUUAUGGCAGUUAUACCCCGGGAUGAUCACCGCAACUGCGUAGGGU

-20.60 ..(((.((((.(((.....)))..(((...(((((((.....((((....)))))))))))))).)))).))).(((....)))...... [[][]][]

-19.00 ...........((((.........((..((((.(((......((((....))))...))).))))..)).....(((....)))..)))) [[][]]

The sequences in the input file are processed one after another, and the results are printed
together with the corresponding sequence descriptor.

We can also feed RNAshapes by standard input, which is useful for directly processing
sequence output generated by other programs. For example, the call

cat random.fasta | RNAshapes

is equivalent to the -f call above. Finally, we can also enter sequences interactively by calling
RNAshapes without any input sequence (but possibly with parameters):

RNAshapes -e 5



126 APPENDIX B. RNASHAPES

Interactive mode. Try ‘RNAshapes -h‘ for more information.

Input sequence (upper or lower case); :q to quit, -h for help.

....,....1....,....2....,....3....,....4....,....5....,....6....,....7....,....8

The interactive mode supports the following features:

• Direct input of sequences (or alternatively by cut-and-paste).

• Input history with keyboard keys UP and DOWN (library editline required).

• Complete interface to all program options. Instead of a sequence, simply type one or
several RNAshapes commands. Examples:

– -h shows the command overview.

– -H <option> shows a detailed help for the given option.

– -c 20 sets the energy range to 20%.

– -C -f ires.fasta switches to consensus shapes mode and starts the analysis
with file ires.fasta.

– :s shows the current settings.

B.1.2 Shape probabilities

RNAshapes offers a number of options to calculate structure and shape probabilities. The
probability of a shape is the sum of the probabilities of all structures that fall into this
shape.

The probability analysis modes are controlled with several options (-p, -q, -P, -i, -r, -
F, -T). The most convenient (but computational most expensive one) is -q, the complete
probability analysis with simultaneous shrep calculation. Applying this to the alanine tRNA
from above gives the following result:

RNAshapes -q -f pharaonis.seq

GGGCCCAUAGCUCAGUGGUAGAGUGCCUCCUUUGCAAGGAGGAUGCCCUGGGUUCGAAUCCCAGUGGGUCCA

-35.90 (((((((((((((((.((((.....((((((.....)))))).))))))))))).........)))))))). 0.9897545 []

-32.20 ((((((((.....((.((((.....((((((.....)))))).))))))(((.......))).)))))))). 0.0089891 [[][]]

-31.70 ((((((...((((.......)))).((((((.....)))))).....(((((.......))))).)))))). 0.0012534 [[][][]]

-27.70 ((((((.((((((.......)))).((((((.....)))))).))..(((((.......))))).)))))). 0.0000029 [[[][]][]]

The shape holding the mfe-structure, [], is also the most probable one (98.97545%), whereas
the other shapes have probabilities below 1%. This means, that this unmodified tRNA is
very unlikely to occur in the clover-leaf shape (this is consistent with biological knowledge
and clearly expresses the need for other mechanisms, such as base modifications, to ensure
that the clover-leaf structure is actually achieved).



B.1. THE RNASHAPES INTERFACE BY EXAMPLE 127

As a second example, we use the pheS-pheT-Attenuator of E. coli (embl:V00291.1/3682-
3754). It is known to switch from a translationally inactive to a translationally active confor-
mation under specific conditions. These two conformations correspond to two valleys in the
structure landscape that are separated by a saddle point (energy barrier). In terms of shape
analysis, this means that two shapes with reasonable probability should be present. The
corresponding experiment delivers the following results (example file attenuator.fasta):

RNAshapes -q -f attenuator.fasta

> pheS-pheT-Attenuator of E. coli (embl:V00291.1/3682-3754)

ATCCAGGAGGCTAGCGCGTGAGAAGAGAAACGGAAAACAGCGCCTGAAAGCCTCCCAGTGGAGGCTTTTTTTG

-21.20 ...((((..(((....(((..........)))......))).)))).((((((((....))))))))...... 0.5381946 [][]

-20.93 .(((((((((((.((((((.................)).)))).....)))))))...))))........... 0.3243870 []

-19.33 ...(((((.....((((((.................)).))))...(((((((((....)))))))))))))) 0.0975740 [[][]]

-19.73 ..((....))...((((((.................)).))))..((((((((((....)))))))))).... 0.0388666 [][][]

-17.30 ...((((..((....)).............((........)))))).((((((((....))))))))...... 0.0008492 [[][]][]

-15.13 ..((....)).((((((((.................)).))))..((((((((((....))))))))))..)) 0.0001033 [][[][]]

-14.20 ...(((((.((....))..............((.........))..(((((((((....)))))))))))))) 0.0000243 [[][][]]

-13.10 ..((....))......(((..........))).....(((...))).((((((((....))))))))...... 0.0000010 [][][][]

The shape with two hairpins has a probability of 0.5381946, whereas the one hairpin shape
has a probability of 0.3243870. Shape 1 corresponds to the ”off” position of the switch and
the higher probability resembles that this is its native position. The ”on” position (Shape
2) is less probable, expressing the need for some external effect to trigger the switch.

As stated above, RNAshapes offers several options to control probability calculation, where
option -q is the computational most expensive one. This is due to the fact, that this
analysis performs an analysis of the complete folding space. Although the computational
effort depends only on the size of the shape space (which is much smaller than the complete
folding space), it requires a substantial amount of computer main memory. In our experience,
option -q can be used with sequences up to 250 bases on a computer with 2GB main
memory. Additionally, this restriction depends not only on the sequence length, but also
on the structural properties of the sequence. To get an impression of the expected running
time for a certain calculation, we can use the option -B that shows a progress bar:

RNAshapes -q -B -f attenuator.fasta

A slightly more efficient variant of option -q above is option -p. This performs the same
analysis, but without calculation of the corresponding shreps. This option should work with
sequences up to a length of around 300 bases (for the presentation, we only use the ”short”
attenuator sequence here):

RNAshapes -p -f attenuator.fasta

> pheS-pheT-Attenuator of E. coli (embl:V00291.1/3682-3754)

ATCCAGGAGGCTAGCGCGTGAGAAGAGAAACGGAAAACAGCGCCTGAAAGCCTCCCAGTGGAGGCTTTTTTTG

0.5381946 [][]

0.3243870 []



128 APPENDIX B. RNASHAPES

0.0975740 [[][]]

0.0388666 [][][]

0.0008492 [[][]][]

0.0001033 [][[][]]

0.0000243 [[][][]]

0.0000010 [][][][]

Now we take a look at option -P. This option only calculates probabilities for shapes with
the lowest free energy shreps. These are often also the shapes of highest probability (but
not necessarily so). This mode is implemented as a two-step process. In the first step, the
lowest free energy shapes are calculated as in shape representative analysis. Then, for each
of these shapes, the probability is calculated individually. The parameter for -P specifies
the number of lowest free energy shapes for which the probability should be calculated:

RNAshapes -P 5 -f attenuator.fasta

> pheS-pheT-Attenuator of E. coli (embl:V00291.1/3682-3754)

ATCCAGGAGGCTAGCGCGTGAGAAGAGAAACGGAAAACAGCGCCTGAAAGCCTCCCAGTGGAGGCTTTTTTTG

-21.20 ...((((..(((....(((..........)))......))).)))).((((((((....))))))))...... 0.5381930 [][]

-20.93 .(((((((((((.((((((.................)).)))).....)))))))...))))........... 0.3243860 []

-19.33 ...(((((.....((((((.................)).))))...(((((((((....)))))))))))))) 0.0975737 [[][]]

-19.73 ..((....))...((((((.................)).))))..((((((((((....)))))))))).... 0.0388665 [][][]

(Only 4 of 5 probabilities calculated. To get more results, increase energy range (-e or -c).)

By default, the lowest free energy shapes are calculated for an energy range up to 10% above
the mfe. In cases, where this energy range contains fewer shapes than requested with the
-P option, we have to increase the energy range with options -e or -c. In our experience,
option -P works with sequences up to 500 bases.

The last, and most powerful approach for long sequences, is the sampling shapes probability
analysis. The sampling shapes approach works in the same manner as Ding and Lawrence’s
Sfold program. In each step of the recursive backtracing procedure, base pairs and the struc-
tural element they belong to are sampled according to their probability, which is obtained
from the partition function. For each sample, we calculate its corresponding shape. The
shape probability then results from its frequency in the sample space. The sampling shapes
approach is activated with option -i, together with the desired number of samples:

RNAshapes -i 1000 -f attenuator.fasta

... samples ...

Results for 1000 iterations:

-21.20 ...((((..(((....(((..........)))......))).)))).((((((((....))))))))...... 0.5050000 [][]

-20.93 .(((((((((((.((((((.................)).)))).....)))))))...))))........... 0.3560000 []

-19.33 ...(((((.....((((((.................)).))))...(((((((((....)))))))))))))) 0.0990000 [[][]]

-19.73 ..((....))...((((((.................)).))))..((((((((((....)))))))))).... 0.0390000 [][][]

-13.60 .........((....)).....((((((..(((..........)))..(((((((....))))))))))))). 0.0010000 [][[][]]

Our experiments revealed that 1000 samples are sufficient to achieve reasonable results
(confidence value of 95% allowing 10% deviation) for shapes with high probability and that



B.1. THE RNASHAPES INTERFACE BY EXAMPLE 129

this number is independent of the sequence length (details in [55]). The sampling approach
is feasible with an input length of up to 1500 bases.

Finally, we can also calculate the probabilities of individual structures by adding the option
-r to the program call. This option can be used with any analysis mode of RNAshapes. For
example, with our first analysis from above, we receive the following result:

RNAshapes -f pharaonis.seq -e 5 -r

GGGCCCAUAGCUCAGUGGUAGAGUGCCUCCUUUGCAAGGAGGAUGCCCUGGGUUCGAAUCCCAGUGGGUCCA

-35.90 (0.4012148) (((((((((((((((.((((.....((((((.....)))))).))))))))))).........)))))))). []

-32.20 (0.0009912) ((((((((.....((.((((.....((((((.....)))))).))))))(((.......))).)))))))). [[][]]

-31.70 (0.0004404) ((((((...((((.......)))).((((((.....)))))).....(((((.......))))).)))))). [[][][]]

The structure probabilities are printed in the second column. Here, the mfe structure has a
probability of 40.12%.

B.1.3 Consensus shapes analysis

RNAshapes integrates the RNAcast approach for prediction of consensus structures [40].
For a family of RNA sequences, the method independently enumerates the near-optimal
shape space, and predicts as the consensus an abstract shape common to all sequences.
As an example, we use a family of IRES elements of Picornaviridae viruses (sequence file
ires.fasta). The consensus shape mode is activated with option -C:

RNAshapes -C -f ires.fasta

1) Shape: [[][][]] Score: -223.50 Ratio of MFE: 0.99

> EMCBCG

CCUUUGCAGGCAGCGGAAAUCCCCACCUGGUAACAGGUGCCUCUGCGGCCAAAAGCCACGUGUAUAAGAUACACCUGCAAAGG

-34.10 ((((((((((..(((((......((((((....))))))..)))))(((.....)))..((((.....)))).)))))))))) [[][][]] R = 2

> MNGPOLY

CCUUUGCAGGCAGCGGAAUCCCCCACCUGGUGACAGGUGCCUCUGCGGCCGAAAGCCACGUGUGUAAGACACACCUGCAAAGG

-39.10 ((((((((((..(((((......((((((....))))))..)))))(((.....)))..((((.....)))).)))))))))) [[][][]] R = 2

> FDI251473

GCACGCAAGCCGCGGGAACUCCCCCUUGGUAACAAGGACCCGCGGGGCCGAAAGCCACGUUCUCUGAACCUUGCGUGU

-34.10 ((((((((((((((((.......(((((....))))).)))))))(((.....)))..((((...))))))))))))) [[][][]] R = 2

> FMDVALF

GCAUGAUGGCUGUGGGAACUCCCCCUUGGUAACAAGGACCCACGGGGCCAAAAGCCACGUCCUCACGGACCCAUCAUGC

-34.70 ((((((((((((((((.......(((((....))))).)))))))(((.....)))..((((....))))))))))))) [[][][]] R = 2

> FAN133359

GCAUGACGGCCGUGGGAACUCCUCCUUGGUAACAAGGACCCACGGGGCCAAAAGCCACGCCCACACGGGCCCGUCAUGU

-41.90 ((((((((((((((((......((((((....)))))))))))))(((.....)))..((((....))))))))))))) [[][][]] R = 1

> PIFMDV2

GCAUGUUGGCCGUGGGAACACCUCCUUGGUAACAAGGACCCACGGGGCCGAAAGCCAUGUCCUAACGGACCCAACAUGU

-39.60 ((((((((((((((((......((((((....)))))))))))))(((.....)))..((((....))))))))))))) [[][][]] R = 1

The consensus shapes are printed in order of their score. Here, the score is the sum of the
shrep energies. The ”ratio of MFE”-value specifies the ratio of this score to the sum of the



130 APPENDIX B. RNASHAPES

minimum free energies. A ratio near 1.0 means a good conservation, a lower ratio means less
conservation. The R-value is the rank of the shape in the shape space of the corresponding
sequence.

As in all other analysis modes, the shape type can be controlled with option -t. For consensus
shape analysis, we generally prefer to work with the less abstract level 3:

RNAshapes -C -f ires.fasta -t 3

To get more results, we can also increase the energy range with options -e and -c, for
example:

RNAshapes -C -f ires.fasta -t 3 -e 10

We propose to use the output of the consensus shapes analysis as input for RNAforester [23],
a multiple RNA structure alignment program. Use output type -o f together with option
-C to generate suitable input for RNAforester. For example:

RNAshapes -C -f ires.fasta -o f | RNAforester -m

Note that with output type -o f only the result for the first consensus is printed (otherwise
RNAforester would not work properly). Use the shape match option -m to get alternative
results. RNAforester is now part of the Vienna RNA package and can be downloaded at
http://www.tbi.univie.ac.at/∼ivo/RNA/.

B.1.4 Additional options

Sliding window mode. Apart from consensus shapes, each analysis mode can be used with
a sliding window mechanism. Here, the complete input sequence is processed by individual
calculations of subsequences of the specified window size.

For example, the file V00291 contains the E.coli thrS, infC, rplT, pheS, pheT and himA
genes (embl:V00291.1) and has a length of 7784 bases. To start the probability analysis
with a window size of 73, we call (this will take some time, maybe stop the calculation with
ctrl-c):

RNAshapes -q -f V00291 -w 73

>V00291 V00291.1 12-SEP-2005

1 73

gattcagtttatgctgctgtaaatccgctcgcagtaaacctttcagacgcaccgtgatgttatcagttgttct

-8.80 ...........((((((.((......))..))))))........(((.(((...((((...))))..)))))) 0.6994365 [][]

-8.20 (((.((.....((((((.((......))..))))))...........(((...))).))..)))......... 0.2448787 [[][]]

-7.50 ((....(((..((((((.((......))..)))))))))...))............................. 0.0425042 []

-5.70 ((......)).((((((.((......))..))))))........(((.(((...((((...))))..)))))) 0.0101577 [][][]

-4.90 ((..(((....((((((.((......))..))))))...........(((...))).((....)).))).)). 0.0014580 [[][][]]



B.1. THE RNASHAPES INTERFACE BY EXAMPLE 131

-4.40 ...........((((((.((......))..))))))........((((((...))).((....)).....))) 0.0007761 [][[][]]

-4.30 ......((...((((((.((......))..))))))...((...))..))....((((...))))........ 0.0005654 [[][]][]

-3.30 ((.........((((((.((......))..)))))).......((..(((...))).((....))..)).)). 0.0001179 [[][[][]]]

-3.60 ((....((...((((((.((......))..))))))...((...))..))....((((...)))).....)). 0.0000690 [[[][]][]]

-2.40 ((......)).((((((.((......))..))))))..........(((...)))..((....))........ 0.0000288 [][][][]

-1.30 ((......)).((((((.((......))..))))))........((((((...))).((....)).....))) 0.0000046 [][][[][]]

-1.00 ((..((((....))))((((..........))))........))..(((...)))..((....))........ 0.0000021 [[][]][][]

-1.30 ((..(((....((((((.((......))..))))))...((...)).(((...))).((....)).))).)). 0.0000010 [[][][][]]

This is the result for the first “window”, the bases 1-73. After this, the window is moved
by one base, and the calculation continues with bases 2-74, and so on. Note that these
succeeding calculations are faster than the first one, since only a single column of the dynamic
programming matrices has to be calculated in each window step. The window step size can
be changed with option -W.

The result for each window is the same as if we would calculate the corresponding sub-
sequence individually. For example, the window 3682-3754 gives the same result as our
pheS-pheT-Attenuator analysis from above, as this is exactly the same sequence.

It would be nice to extend the window approach in a way that the results for the individual
windows are merged to a result for the complete sequence. Currently, this is not implemented
in RNAshapes.

Suboptimal folding. RNAshapes offers a complete suboptimal folding mode. Its im-
plementation is based on a nonambiguous RNA grammar and handles dangling energies
correctly. It is activated with option -s:

RNAshapes -f pharaonis.seq -s -e 5

GGGCCCAUAGCUCAGUGGUAGAGUGCCUCCUUUGCAAGGAGGAUGCCCUGGGUUCGAAUCCCAGUGGGUCCA

-31.10 ((((((((....(((.((((.....(((((((...))))))).)))))))((........)).)))))))). [[][]]

-31.10 ((((((((....(((.((((.....((((((.....)))))).)))))))((........)).)))))))). [[][]]

-32.20 ((((((((.....((.((((.....(((((((...))))))).))))))(((.......))).)))))))). [[][]]

.... (69 results more) ...

Shape matching. To see only those structures, that fall into a certain shape, we can use
the ”shape match” option -m. For example, to see all clover-leaf structures in the energy
range 5 kcal/mol above the mfe, we call:

RNAshapes -f pharaonis.seq -s -e 5 -m ’[[][][]]’

GGGCCCAUAGCUCAGUGGUAGAGUGCCUCCUUUGCAAGGAGGAUGCCCUGGGUUCGAAUCCCAGUGGGUCCA

-31.60 (((((((..((((.......)))).(((((((...))))))).....(((((.......)))))))))))). [[][][]]

-31.60 (((((((..((((.......)))).((((((.....)))))).....(((((.......)))))))))))). [[][][]]

-31.70 ((((((...((((.......)))).(((((((...))))))).....(((((.......))))).)))))). [[][][]]

-31.70 ((((((...((((.......)))).((((((.....)))))).....(((((.......))))).)))))). [[][][]]

The ”shape match” option is also available in all other analysis modes of RNAshapes.

Output control. RNAshapes offers a number of options to control the program output.
The first option, -S, splits structures into smaller parts. This is especially useful when



132 APPENDIX B. RNASHAPES

working with long sequences where the program output can be quite confusing for manual
inspection. For example:

RNAshapes -f pharaonis.seq -S 50

-35.90 1 50

GGGCCCAUAGCUCAGUGGUAGAGUGCCUCCUUUGCAAGGAGGAUGCCCUG

(((((((((((((((.((((.....((((((.....)))))).)))))))

51 72

GGUUCGAAUCCCAGUGGGUCCA

)))).........)))))))). []

The option -O can be used to “fine-tune” the format of the printed results, for example
when we are only interested in parts of the result, or when results of RNAshapes should be
used as input for other programs. See Section B.2 for a detailed description.

B.2 Options

The following section gives a complete description of the RNAshapes command line interface.

-h Display command option overview

-H option Display detailed information on option

This displays the corresponding section of the RNAshapes manual for the given command
line option.

-v Show version

This shows the version number of RNAshapes.

B.2.1 Sequence analysis modes

-a Shape folding (standard mode)

RNA folding based on abstract shapes. This is the standard mode of operation when no
other options are given. It calculates the shapes and the corresponding shreps based on free
energy minimization. The energy range can be set by -e and -c. When not specified, the
energy range is set to 10% of the minimum free energy.

-s Complete suboptimal folding

Complete suboptimal folding of RNA. This mode uses a non-ambiguous grammar that also
handles dangling bases of multiloop components in a non-ambiguous way. The energy range
can be set by -e and -c. When not specified, the energy range is set to 10% of the minimum
free energy.

-p Shape probabilities



B.2. OPTIONS 133

Shape probability mode. This option calculates the shape probabilities based on partition
function. The probability of a shape is the sum of the probabilities of all structures that
fall into this shape. On a computer with 2GB main memory, sequences up to a length of
300 bases can be processed with this mode.

-q Shape probabilities (including shreps)

Shape probability mode. Calculates the shape probabilities based on partition function.
This is the same as -p, and additionally, the corresponding shreps with their minimum free
energies are calculated. Note that this mode is slightly slower than -p and can be used with
sequences up to a length of 250 bases.

-P value Shape probabilities for mfe-best shapes

Shape probability mode. This mode first calculates the best value shapes based on free
energy minimization. In a second step, it calculates the probability for each of these best
shapes. This mode has lower memory requirements than modes -p and -q and can be used
for longer sequences (up to 500 bases). The energy range must be specified with -e or -c in
order to get the desired number of results.

-i value Sampling with value iterations

Probabilistic sampling based on partition function. This mode combines stochastic sampling
with a-posteriori shape abstraction. A sample from the structure space holds M structures
together with their shapes, on which classification is performed. The probability of a shape
can then be approximated by its frequency in the sample.

Sequences up to a length of around 1500 can be handled with this mode. In our experience,
1000 iterations are sufficient to achieve reasonable results for shapes with high probability.

-C Consensus shapes (RNAcast)

For a family of RNA sequences, this method independently enumerates the near-optimal
abstract shape space, and predicts as the consensus an abstract shape common to all se-
quences. For each sequence, it delivers the thermodynamically best structure which has this
common shape. Since the shape space is much smaller than the structure space, and identi-
fication of common shapes can be done in linear time (in the number of shapes considered),
the method is essentially linear in the number of sequences. Input for RNAcast must be
provided in multiple fasta format.

We propose to use the output of the consensus shapes analysis as input for RNAforester [23],
a multiple RNA structure alignment program. Use output type -o f together with option
-C to generate suitable input for RNAforester. For example:

RNAshapes -f test.fasta -C -o f | RNAforester -m

Note that with output type -o f only the result for the first consensus is printed (otherwise
RNAforester would not work properly). Use the shape match option -m to get alternative
results. RNAforester is now part of the Vienna RNA package and can be downloaded at



134 APPENDIX B. RNASHAPES

http://www.tbi.univie.ac.at/~ivo/RNA/.

B.2.2 Additional modes (use with any of the above)

-r Calculate structure probabilities

This calculates the probability of every computed structure. It can be combined with any
sequence analysis mode. Note that this option increases processing time of modes -a, -s
and -C.

-w value Specify window size

Beginning with position 1 of the input sequence, the analysis is repeatedly processed on
subsequences of the specified size. After each calculation, the results are printed out and
the window is moved by the window position increment (-W), until the end of the input
sequence is reached.

-W value Specify window position increment (use with -w) (default: 1)

This specifies the increment for the window analysis mode (-w).

-m shape Match shape (use with -a, -s, -p, -q, or -C)

Specify a shape for the corresponding mode of operation. For example, with options -p -m
’[]’ the probability of shape [] is computed.

B.2.3 Analysis control

-e value Set energy range (kcal/mol)

This sets the energy range for shape folding (-a), complete suboptimal folding (-s), proba-
bility analysis with -P, and consensus shapes analysis (-C). value is the difference to the
minimum free energy for the sequence.

-c value Set energy range (%) (default: 10)

This sets the energy range as percentage value of the minimum free energy. For example,
when -c 10 is specified, and the minimum free energy is -10.0 kcal/mol, the energy range is
set to -9.0 to -10.0 kcal/mol.

-t value Specify shape type (1-5) (default: 5)

The shape type is the level of abstraction or dissimilarity which defines a different shape.
In general, helical regions are depicted by a pair of opening and closing square brackets and
unpaired regions are represented as a single underscore. The differences of the shape types
are due to whether a structural element (bulge loop, internal loop, multiloop, hairpin loop,
stacking region and external loop) contributes to the shape representation: Five types are
implemented. Their differences are shown in the following example:



B.2. OPTIONS 135

AUCGGCGCACAGGACAUCCUAGGUACAAGGCCGCCCGUU

..(((.((..(((....))).(((.....))))))))..

Type 5: Most abstract - helix nesting pattern and no unpaired regions

[[][]]

Type 4: helix nesting pattern and unpaired regions in external loop and multiloop

_[_[]_[]]_

Type 3: nesting pattern for all loop types but no unpaired regions

[[[][]]]

Type 2: nesting pattern for all loop types and unpaired regions in external loop and multi-
loop

_[[_[]_[]]]_

Type 1: Most accurate - all loops and all unpaired

_[_[_[_]_[_]]]_

-F value Set probability cutoff filter (use with -p, -q or -P)

This option sets a barrier for filtering out results with very low probabilities during calcu-
lation. The default value here is 0.000001, which gives a significant speedup compared to
a disabled filter. Note that this filter can have a slight influence on the overall results. To
disable this filter, use option -F 0.

-T value Set probability output filter (use with -p, -q or -P)

This option sets a filter for omitting low probability results during output. Unlike -F, this
option does not have any influence on probabilities beyond this value.

-M value Set maximum loop length (default: 30) (use -M n for unrestricted)

This option sets the maximum lengths of the considered internal and bulge loops. The
default value here is 30. Note that this restriction can have a very slight influence on the
calculated structure and shape probabilities. For unrestricted loop lengths, use option -M
n. This will increase calculation times and memory requirements.

-l Allow lonely base pairs



136 APPENDIX B. RNASHAPES

In default mode, RNAshapes only considers helices of length 2 or longer. With option -l,
lonely base pairs are also included.

-u Ignore unstable structures (use with -a, -s or -C)

This option filters out closed structures with positive free energy.

B.2.4 Input/Output

-o value Specify output type (1-4,f) (default: 2)

Specifies the output type. Output type 1 mimics RNAfold and RNAsubopt. Type 2 is the
default RNAshapes output. Type 3 is similar to type 2, but without parentheses and with
only a single space between results. This output type can be used for exporting results as
a comma separated text-file to other applications like Microsoft Excel. Type 4 is a colored
variant of type 2. Additional output types can be defined with option -O.

In consensus shapes analysis (-C), output type f can be used to generate suitable input for
RNAforester (a multiple RNA structure alignment program; see -C for details).

-O string Specify output format string

The option -O can be used to ”fine-tune” the format of the printed results, for example
when we are only interested in parts of the result, or when results of RNAshapes should be
used as input for other programs. The syntax is as follows:

TYPE{FORMAT}...TYPE{FORMAT}

where TYPE specifies the result element:

D: structure in dot-bracket notation

S: shape string

E: energy

P: shape probability

R: structure probability (option -r)

C: shape rank (option -C)

V: verbatim output, independent of result element

FORMAT is the C-format string that shall be used to print the corresponding result element.
Typical C-format strings are %.2f for a floating point number with two decimal places and
%s for a string. For example, to print only the structure followed by its energy, we can
use -O ’D{%s\t}E{%.2f}V{\n}’. The symbol ’\n’ performs a line break, the symbol ’\t’ a
tabulator. An ANSI escape sequence can be used with symbol ’\e’ (see Example 4 below).

The standard output types (option -o) are defined as follows:



B.2. OPTIONS 137

1) ’D{%s }E{(%.2f) }R{(%.7f) }P{%.7f }S{%s}C{ R = %d}V{\n}’

2) ’E{%-8.2f}R{(%.7f) }D{%s }P{%.7f }S{%s}C{ R = %d}V{\n}’

3) ’E{%.2f }R{%.7f }D{%s }P{%.7f }S{%s}C{ %d}V{\n}’

4) ’E{%-8.2f}R{(%.7f) }D{\e[1;31m%s\e[0m }

P{\e[1;30m%.7f\e[0m }S{%s}C{ R = %d}V{\n}’

-S value Specify output width for structures

This splits the structure strings into parts of the specified length. This option is useful when
displaying results for long sequences that would otherwise not fit onto the screen.

-# value Print only the first value results

This option specifies the total number of results to be printed. When this number is reached,
the program terminates. Note that this option does not reduce calculation time or memory
requirements (except for modes -s and -i).

-g value Generate structure graphs for first value structures

This generates postscript structure graphs for the first value structures computed for a
sequence. If multiple sequences are given, value graphs are generated for each sequence.

The filenames of the structure graphs consist of several parts:

1. When the input sequence is given in fasta format, the first 12 characters of the se-
quence description are taken. White-spaces and special characters are removed. When no
description is available, ”rna” is chosen as standard name.

2. The sequence position in window mode (option -w).

3. The running number of the result.

For example, the first result of a sequence called ”xyz” at position 7 in window mode will
be saved in file xyz 7 1.ps.

-L Highlight uppercase characters in structure graphs

Used with option -g, this generates postscript structure graphs where all uppercase char-
acters in the input sequence are highlighted. This option is useful for marking interesting
regions of the input sequence.

-N Do not include additional information in graph output file

In standard operation, the postscript structure graph generation (option -g) generates files
with shape, energy, and shape probability (if available) included at the bottom. Use this
option to suppress this.

-f file Read input from file

Let RNAshapes load its input data from file. file can contain a plain single sequence,
or multiple sequences in fasta format. When given multiple sequences, each sequence is
processed separately in the order of input.



138 APPENDIX B. RNASHAPES

Valid characters in an input sequence are ”ACGU” and ”acgu”. ”T” and ”t” will be con-
verted to ”U”. Other letters are mapped to ”N” and will not be paired. All other characters
are ignored.

-B Show progress bar (use with -p, -q or -P)

Setting this option activates a progress bar. This is useful when experimenting with options
-p and -q, to get an impression of the expected running time.

-z Enable colors (in interactive mode: disable colors)

This option enables colored output. In interactive mode, this is the default setting, so use
-z to disable colors here.

-Z Enable colors for dotbracket and shape strings

This option colors dotbracket and shape strings in the result output, such that corresponding
structural elements have the same color in both representations.

-D string Convert dotbracket-string to shape (choose type with -t)

Convert a dotbracket-string into a shape. Choose the shape type with option -t. The default
shape type is 5. For example:

RNAshapes -D ’.((((.(((....))).))))...(((....))).’ -t 4

_[]_[]_

-U Start graphical user interface

This option starts the graphical user interface included in the RNAshapes distribution. It re-
quires Java 1.4.2 or later (download from http://java.sun.com/). Note that the RNAshapes
distribution for Microsoft Windows includes a slightly different user interface. It does not
require Java and additionally, it offers an interactive visualization of the calculated RNA
structures.

B.2.5 Additional interactive mode commands

:s Show current configuration

This command shows the current settings in an interactive session.

:d Reset configuration

This command sets all settings to their default values.

:e string Execute system command

Command :e executes a system command. For example, we can use the command :e gv
rna 1.ps to open a structure graph file created with option -g (on a unix machine with gv
installed).



B.2. OPTIONS 139

:q Quit

This command quits an interactive RNAshapes session.



140 APPENDIX B. RNASHAPES



Bibliography

[1] A.V. Aho and J.D. Ullman. The Theory of Parsing, Translation and Compiling.
Prentice-Hall, Englewood Cliffs, NJ, 1973. I and II.

[2] R. Bellman. Dynamic Programming. Princeton University Press, 1957.

[3] G. L. Burn, C. L. Hankin, and S. Abramsky. The theory and practice of strictness
analysis for higher order functions. In LNCS 217. Springer-Verlag, New York, NY,
1985.

[4] P. Cousot and R. Cousot. Abstract interpretation: A unified lattice model for static
analysis of programs by construction of approximation of fixed points. In Proceedings
of the 4th ACM Symposium on Principles of Programming Languages, Los Angeles,
pages 238–252, New York, NY, 1977. ACM.

[5] D. M. Cvetković, M. Doob, and H. Sachs. Spectra of Graphs - Theory and Applications.
Academic Press, New York, NY, 1980.

[6] Y. Ding and C. E. Lawrence. A statistical sampling algorithm for RNA secondary
structure prediction. Nucleic Acids Res., 31:7280–7301, 2003.

[7] R.D. Dowell and S.R. Eddy. Design of lightweight stochastic context-free grammars for
RNA secondary structure prediction. BMC Bioinformatics, 5(71), 2004.

[8] R. Durbin, S. Eddy, A. Krogh, and G. Mitchison. Biological Sequence Analysis. Cam-
bridge University Press, 1998.

[9] D. Evers and R. Giegerich. Reducing the conformation space in RNA structure predic-
tion. In German Conference on Bioinformatics, 2001.

[10] F. R. Gantmacher. The Theory of Matrices, volume one. Chelsea Publ. Comp., New
York, NY, 1959.

[11] P.P. Gardner and R. Giegerich. A comprehensive comparison of comparative RNA
structure prediction approaches. BMC Bioinformatics, 5(140), 2004.

141



142 BIBLIOGRAPHY

[12] W. Gautschi. The asymptotic behaviour of powers of matrices. Duke Math. J., 20:127–
140, 1953.

[13] R. Giegerich. A declarative approach to the development of dynamic programming
algorithms, applied to RNA folding. Technical report, Universität Bielefeld, 1998.

[14] R. Giegerich. Explaining and controlling ambiguity in dynamic programming. In Proc.
Combinatorial Pattern Matching, pages 46–59. Springer LNCS 1848, 2000.

[15] R. Giegerich. A systematic approach to dynamic programming in bioinformatics. Bioin-
formatics, 16:665–677, 2000.

[16] R. Giegerich and C. Meyer. Algebraic Dynamic Programming. In Hélène Kirchner and
Christophe Ringeissen, editors, Algebraic Methodology And Software Technology, 9th
International Conference, AMAST 2002, pages 349–364. Springer LNCS 2422, 2002.

[17] R. Giegerich, C. Meyer, and P. Steffen. A discipline of dynamic programming over
sequence data. Science of Computer Programming, 51(3):215–263, 2004.

[18] R. Giegerich and P. Steffen. Implementing algebraic dynamic programming in the
functional and the imperative programming paradigm. In E.A. Boiten and B. Möller,
editors, Mathematics of Program Construction, pages 1–20. Springer LNCS 2386, 2002.

[19] R. Giegerich and P. Steffen. Challenges in the compilation of a domain specific language
for dynamic programming. In Proceedings of the 2006 ACM Symposium on Applied
Computing, 2006.

[20] R. Giegerich, B. Voß, and M. Rehmsmeier. Abstract Shapes of RNA. NAR,
32(16):4843–4851, 2004.

[21] D. Gusfield. Algorithms on Strings, Trees, and Sequences. Cambridge University Press,
1997.

[22] J.H. Havgaard, R.B. Lyngsø, G.D. Stormo, and J. Gorodkin. Pairwise local structural
alignment of RNA sequences with sequence similarity less than 40%. Bioinformatics,
21(9):1815–1824, 2005.

[23] M. Höchsmann, B. Voss, and R. Giegerich. Pure multiple RNA secondary structure
alignments: A progressive profile approach. IEEE/ACM Transactions on Computa-
tional Biology and Bioinformatics, 1(1):53–62, 2004.

[24] I.L. Hofacker, W. Fontana, P.F. Stadler, L.S. Bonhoeffer, M. Tacker, and P. Schuster.
Fast folding and comparison of RNA secondary structures. Monatshefte f. Chemie,
125:167–188, 1994.

[25] P. Hudak. Building domain-specific embedded languages. ACM Comput. Surv.,
28(4es):196, 1996.



BIBLIOGRAPHY 143

[26] G. Hutton. Higher order functions for parsing. Journal of Functional Programming,
3(2):323–343, 1992.

[27] S. Jain and S. Krishna. Emergence and growth of complex networks in adaptive systems.
Comp. Phys. Comm., 121-122:116–121, 1999.

[28] R. M. Karp, R. E. Miller, and S. Winograd. The organization of computations for
uniform recurrence equations. Journal of the ACM, 14(3):563–590, July 1967.

[29] J. M. Lewis and M. Yannakakis. The node-deletion problem for hereditary properties
is NP-complete. Journal of Computer and System Sciences, 20(2):219–230, April 1980.

[30] D.H. Mathews and D.H. Turner. Dynalign: an algorithm for finding the secondary
structure common to two RNA sequences. J Mol Biol, 317(2):191–203, 2002.

[31] J.S. McCaskill. The equilibrium partition function and base pair binding probabilities
for RNA secondary structure. Biopolymers, 29:1105–1119, 1990.

[32] U. Möncke and R. Wilhelm. Grammar flow analysis. In H. Alblas and B. Melichar,
editors, Attribute Grammars, Applications and Systems, pages 151–186. LNCS 545,
1991.

[33] T. L. Morin. Monotonicity and the principle of optimality. Journal of Mathematical
Analysis and Applications, 86:665–674, 1982.

[34] R. Nussinov, G. Pieczenik, J.R. Griggs, and D.J. Kleitman. Algorithms for loop match-
ings. SIAM J. Appl. Math., 35:68–82, 1978.

[35] L. Pachter and B. Sturmfels, editors. Algebraic Statistics for Computational Biology.
Cambridge University Press, 2005.

[36] S.L. Peyton Jones. The Implementation of Functional Programming Languages. Series
in Computer Science. Prentice-Hall International, 1987.

[37] S.L. Peyton Jones, editor. Haskell 98 Language and Libraries – The Revised Report.
Cambridge University Press, April 2003.

[38] R. Plasmeijer and M. van Eekelen. Functional Programming and Parallel Graph Rewrit-
ing. International Computer Science Series. Addison-Wesley, 1993.

[39] J. Reeder and R. Giegerich. Design, implementation and evaluation of a practical
pseudoknot folding algorithm based on thermodynamics. BMC Bioinformatics, 5(104),
2004.

[40] J. Reeder and R. Giegerich. Consensus shapes: an alternative to the Sankoff algorithm
for RNA consensus structure prediction. Bioinformatics, 21(17):3516–3523, 2005.



144 BIBLIOGRAPHY

[41] J. Reeder, P. Steffen, and R. Giegerich. Effective ambiguity checking in biosequence
analysis. BMC Bioinformatics, 6(153), 2005.

[42] M. Rehmsmeier, P. Steffen, M. Höchsmann, and R. Giegerich. Fast and effective pre-
diction of microRNA/target duplexes. RNA, 10:1507–1517, 2004.

[43] G. Rote. Path problems in graphs. In G. Tinhofer, E. Mayr, H. Noltemeier, and
M. Syslo, editors, Computational Graph Theory, Computing Supplementum 7, pages
155–189. Springer-Verlag, 1990.

[44] D. Sankoff. Simultaneous solution of the RNA folding, alignment and protosequence
problems. SIAM J. Appl Math, 45(5):810–825, 1985.

[45] A. Sczyrba, J. Krüger, H. Mersch, S. Kurtz, and R. Giegerich. RNA-related tools on
the Bielefeld Bioinformatics Server. Nucl. Acids. Res., 31(13):3767–3770, 2003.

[46] D.B. Searls. Linguistic approaches to biological sequences. CABIOS, 13(4):333–344,
1997.

[47] B.A. Shapiro. An algorithm for comparing multiple RNA secondary structures.
CABIOS, 4:381–393, 1988.

[48] P. Steffen. Basisfunktionen für die Übersetzung von Programmen der Algebraischen
Dynamischen Programmierung. Diplomarbeit, Universität Bielefeld, 2002.

[49] P. Steffen and R. Giegerich. Versatile and declarative dynamic programming using pair
algebras. BMC Bioinformatics, 6(224), 2005.

[50] P. Steffen and R. Giegerich. Table design in dynamic programming. Information and
Computation, 204(9):1325–1345, 2006.

[51] P. Steffen, B. Voß, M. Rehmsmeier, J. Reeder, and R. Giegerich. RNAshapes: an
integrated RNA analysis package based on abstract shapes. Bioinformatics, 22(4):500–
503, 2006.

[52] R. E. Tarjan. Depth-first search and linear graph algorithms. SIAM Journal on Com-
puting, 1(2):146–160, 1972.

[53] A. van Deursen, P. Klint, and J. Visser. Domain-specific languages: An annotated
bibliography. ACM SIGPLAN Notices, 35(6):26–36, 2000.

[54] R. S. Varga. Matrix Iterative Analysis. Prentice-Hall, 1962.

[55] B. Voß, R. Giegerich, and M. Rehmsmeier. Complete probabilistic analysis of RNA
shapes. BMC Biology, 4(5), 2006.

[56] R. Wilhelm and D. Maurer. Übersetzerbau: Theorie, Konstruktion, Generierung.
Springer-Verlag, Berlin, 2 edition, 1996.



BIBLIOGRAPHY 145

[57] S. Wuchty, W. Fontana, I. L. Hofacker, and P. Schuster. Complete suboptimal folding
of RNA and the stability of secondary structures. Biopolymers, 49:145–165, 1999.


