Script language: Python

Regular Expressions

Cédric Saule

Technische Fakultit
Universitat Bielefeld Universitit Bielefeld

12. Februar 2016

Regular expressions

What we want to do WITHOUT using any text editor. (CTRL + F) is
not a text search:

e Reading text files line per line.

2 of 21

Regular expressions

What we want to do WITHOUT using any text editor. (CTRL + F) is
not a text search:

e Reading text files line per line.

e Search lines for patterns.

2 of 21

Regular expressions

What we want to do WITHOUT using any text editor. (CTRL + F) is
not a text search:

e Reading text files line per line.
e Search lines for patterns.

e Sentences become subwords.

2 of 21

Regular expressions

What we want to do WITHOUT using any text editor. (CTRL + F) is
not a text search:

Reading text files line per line.

Search lines for patterns.

Sentences become subwords.

Replaces pieces of text.

2 of 21

Regular expressions

e The simpliest Chomsky family languages.
e In Python: Regular Expressions (RE) are close to the Perl syntax.

e Regular Expressions in Python are significantly more powerful than
regular languages.

3of 21

Regular expressions

We work with the module re that provides us the functionality RE
available in Perl.

In Python, everything starts with an object pattern that provides the
appropriate functions.

> import re

story = n,agholeyin the ground there lived_ a boggit.
> story 1 hol in,theyg d,th lived boggit .’

Vv

p

ANV V V V

m
m
m
m
S

4 of 21

re.compile(r"in")
p.match(story)

p.-search(story)

#Looks at the
#No result ->
#Looks in the
#0bject match

_sre.SRE_Match at 0x1042a9648>

beginning of the strin
None
entire string

Object pattern

The pattern is built with re.compile (KRE_STR>, <FLAGS>).

e The pattern begins with r followed by the string RE (eg:
re.compile(r" [a-z]*")).

e Most frequently used Modifier (flag):
re..GNORECASE Ignore the letters' case.

From the above example follows:
re.compile(r "[a-z]*", re.IGNORECASE).

5 of 21

Object match

The following methods are defined in the objects match.

group() Returned value: The matched string.

(
start() Returned value: Start index of the match.
(
(

)
end() Returned value: End index of the match.
)

span() Returned value: Start-/End index as tuple.

6 of 21

Object match

If a match is found, an object match is returned, otherwise None.

General procedure for RE processing in Python.

p = re.compile (<PATTERN>)
m = p.match(’string,goes here’)
if m:
print ’Match, found:,’, m.group(), ’ywith,indicesy’, m.span()
else:
print ’Nogymatch’

V V.V V VvV Vv

7 of 21

Pattern — findall() & finditer()

To find all occurrences, use findall() and finditer():

> p = re.compile(’\d+?)
> p.findall(’12,drummers drumming, 11, ,pipers,piping,
uulOy,lordsa-leaping?)

[>12°, 211>, 210°] #4111l patterns found are listed

> iterator = p.finditer(’12,drummers drumming, 11,...4104...7)
> iterator #Iterator on a match object.

<callable-iterator object at Ox...>

> for match in iterator:

> print match.span ()

0, 2)

(22, 24)

(29, 31)

8 of 21

sub() — Pattern replacement

With sub(<REPL>, <STR>[, count=0]) (Substitute) Pattern can be
replaced with REPL. The maximum number of replacements can be
specified by count.

> t = 212 drummers drumming, 11 pipers piping,..."’
> p = re.compile(’umm’)

> p.sub("ift", t)
12, driftersdrifting,y 11 ,pipers,piping,..."’

> p.sub("rift", t, count=1)
’12ydrifters drumming, 11 pipersypiping,..."

9 of 21

Exercise — Search and replace

The text files listed below can be found in /vol/lehre/python/. They
are plays by Wayne Anthoney.

e How many lines of romeo.txt contains the word , Gold"?
e Give the respective index positions of hits per line.

e Replace in the text eric.txt the word ,, Estragon” by ,,Basilic" and
»Vladimir” by, llitch”.

10 of 21

RegEx

¢ Alternative: r"Huey|Dewey|Louie"
e Grouping: r" (Hu|Dew)ey|Louie"
e Quantifiers:

r"ab?a" # aa, aba

r"ab*xa" # aa, aba, abba, abbba, abbbdba,
r"ab+a" # aba, abba, abbba, abbbdbba,
r"ab{3,6}a" # abbba, abbbba, abbbbba, abbbbbba
r"a(bab)+a" # ababa, ababbaba, ababbabbaba,

11 of 21

RegEx

e Character classes

r"hello\s+world" # whitespace
r"esyist,\d+,Uhr" # digits
r"name: \w+" # letters (words)
e . Opposites”: \S, \D, \W
e Self-created character class
r"M[eal [iyler" # Meier, Meyer, Maier, MNayer

r"[a-z]{2,8}" # Account name
r"[A-Z][~0-9]+"

e Fits all: .

12 of 21

Anchor

Tie the pattern to a specific position:
e Start/ end of lines.

r"~LOCUS.+" # LOCUS line from GenBank file
r"\s+$" # all trailing whitespace
r"~\d+,\d+_,\d+$" # 3d coord

e Space between words.

r"\bwith\b" # "not with me", "Come with me!"
r"\bmit\B" # "mittendrin", nicht "vermitteln"

13 of 21

Exercise — Sentence extraction

¢ Read the file /etc/services lines by lines.

o Extract all the lines which correspond to the protocol TCP.

o Extract all the lines which describe a service (So, there is no line of
commentary).

o Extract all the lines which contain a four or five digits port number.

e How could we extract all the lines from romeo.txt, in which the
words ,,club” or ,,clubs” appear but not ,,clubroom”?

14 of 21

Patterns Capture

e Up to now: patterns occur in the text.

15 of 21

Patterns Capture

e Up to now: patterns occur in the text.
e But: What was the hit 7 — findall only half the truth.

15 of 21

Patterns Capture

e Up to now: patterns occur in the text.

e But: What was the hit 7 — findall only half the truth.
e Select region of interest:

r"~LOCUS\s+(\S+)"
r"~VERSION\s+(\S+)\.(\d+)\s+GI: (\d+)$"

15 of 21

Patterns Capture

e Up to now: patterns occur in the text.

e But: What was the hit 7 — findall only half the truth.
e Select region of interest:

r"~LOCUS\s+(\S+)"
r"~VERSION\s+(\S+)\.(\d+)\s+GI: (\d+)$"

e Hits stand at match in match objects.

> import re
> p = re.compile(r’a(b((c)d))?)
> m = p.match(’abcd?)
> m.group () #Whole match -> m.group (0)
’abcd’
> m.groups () #Selected groups
(’bcd’, ’Cd’, ’C’)
> m.group(2)
,Cd’
15 of 21

Patterns Capture

e Up to now: patterns occur in the text.

e But: What was the hit 7 — findall only half the truth.
e Select region of interest:

r"~LOCUS\s+(\S+)"
r"~VERSION\s+(\S+)\.(\d+)\s+GI: (\d+)$"

e Hits stand at match in match objects.

import re

p = re.compile(r’a(b((c)d))?’)

m = p.match(’abcd?’)

m.group () #Whole match -> m.group (0)
>abcd’

> m.groups () #Selected groups

(’bcd’, ’Cd’, ’C’)

> m.group (2)

,Cd’

>
>
>
>

e Use quantifiers correctly: (\w)+ I= (\w+)
15 of 21

Exercise — Romeo, oh Romeo...

In romeo.txt we find the scene of the ,,ROMEOQO enters"

Extract the names of the people who took the scene in this way. Use
an appropriate data type to save the people only once.

16 of 21

Pattern Capturing

e The pattern must fit completely:
> p = re.compile(r’a(b((c)d))?)
> m = p.match(’abcd?’)

> type(m)
NoneType

e Differences between grouping and capturing:

r"\d+(-\d+)*" #-12345
r"\d+(7:-\d+)*" #12345

17 of 21

Exercise — Service list as a Service

Read /etc/services. Place the informations about the coloquial services
For the line ftp 21/tcp the output looks like:
Der Dienst "ftp'"verwendet TCP auf Port 21

Any additional information (Name/alias or comments) should be
ignored.

18 of 21

Greedy Matches

e What happens when a pattern is not unambiguous ?

t = "aaaaaaaaaa"

= re.compile(r" (a+)(a+)")
p.match(t)

.group () #ee?

.groups () #222

V V.V V Vv
8 B BT
Il

19 of 21

Greedy Matches

e What happens when a pattern is not unambiguous ?

t = "aaaaaaaaaa"

= re.compile(r" (a+)(a+)")
p.match(t)

.group () #e22

.groups () #222

V V.V V Vv
8 B BT
Il

e Try out:

r"(a+) (ax)"
r" (ax) (a+)"
r"(ax*x) (ax)"
" (a-?) (a*) n
r"(af{2,43}) (ax)"

19 of 21

Greedy Matches

e What happens when a pattern is not unambiguous ?

t = "aaaaaaaaaa"

= re.compile(r" (a+)(a+)")
p.match(t)

.group () #e22

.groups () #222

V V.V V Vv
B B B'O
Il

e Try out:

r"(a+) (ax*x)"
r" (ax*x) (a+)"
r" (ax) (ax*x)"
r" (a?) (ax*x)"
r" (a{2,4}) (ax)"
e Set behind the first quantifiers: +7 *? 7?7 {2,4}7

19 of 21

Text decomposition

e Sequence components to combine a string:

>1=["b’, 1, ’ffeeg’]
> ""_ join(map(str, 1))
’blffeeg’

* Opposite function with RE: split(string[, count=0])
e Separation with pattern:

> story = "Inpapholeyingythe,ground thereylivedya hobbit."

> p = re.compile(r"\s")

> p.split(story)

[>’In’>, ’a’, ’hole’, ’in’, ’the’, ’ground’, ’there’, ’lived’,
’a’, ’hobbit.’]

20 of 21

Exercise — Separate the sentences!

Split the sentences.
»In a hole in the ground there lived a hobbit."

With the following patterns. Which words are built there?

I'"|_|"
rhmn
rll\s*ll
I'"\b"
r"\B"

How big are the results?

21 of 21

