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Python
–
List description.
range, xrange, Generators, List description
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range() vs. xrange()

range([[start, [end]], step]) Create a list from start, to end with an
increment of step.
• Returned value: list with int.
• List is persistent in memory before.

xrange([[start, [end]], step])) Generator with the same properties as
range (lazy evaluation).
• Returned value: an object xrange, not a list.
• Is iterable.
• Used in loops and is optimized for the memory → Has
the same property as a list generated with range.

• Particularly efficiently if all elements are not called.
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range() vs. xrange

> range (3)
[0, 1, 2]
> g = xrange (3)
> g
xrange (3)
> for x, y in enumerate(range (2 ,4)):
> print x, y/2.
0 1.0
1 1.5
> for x, y in enumerate(g):
> print x, y/2.
0 1.0
1 1.5
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Generators

How to create a list with exactly this (y) content?

> retL = []
> for y in xrange (2,4):
> retL.append(y/2.)
> retL
[1.0, 1.5]

More efficient?

> retLfast = []
> g = ( y/2 for y in xrange(2, 4))
> for y in g:
> retLfast.append(y)
> retLfast
[1.0, 1.5]
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Generators

The term (y/2 for y in xrange(2, 4)) is called generator and
can be used in loops as generating function similarly to xrange.
• A defined arithmetic operation is executed only if we have another
pass through the loop.

• Memory efficiency, because the entire list is not generated.
• If a break occurs, we can continue working elsewhere with the next
element.

In our case, the list generation is still not fast enough and elegant.
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List description

The generator expression can be used almost 1 : 1 to directly generate
a list:

> [y/2 for y in xrange (2 ,4)]
[1.0, 1.5]

The same is true for the production of dict and set:

> #dict
> {y:y/2 for y in xrange (2,4)}
{2: 1.0, 3: 1.5}

> #set
> {y/2 for y in xrange (2 ,4)}
{1.0, 1.5}
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List description

Which list is created here?

> [ letter*N for N in range(1,5), for letter in ’abcd’ ]
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List description

> [ letter*N for N in range(1,5), for letter in ’abcd’ ]
[’a’,
’b’,
’c’,
’d’,
’aa’,
’bb’,
’cc’,
’dd’,
’aaa’,
’bbb’,
’ccc’,
’ddd’,
’aaaa’,
’bbbb’,
’cccc’,
’dddd’]
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Exercise – FASTA list description

Consider a FASTA format to describe a DNA sequence. Create a
sequence and return a list that looks like
["A", "A", "C", "T", "A", "G"]

Create a function that expects two parameters: n, the length of the
sequence and s, the sequence name. This function has to generate a
DNA sequence from the previous list and to return the name and
sequence in FASTA format. The output has to be in upper case:
’AACTAG’
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Logical generator

The following little script uses a sophisticated List generator that
returns truth values.
> [ ’%s␣is␣%s’ % (item , bool(item)) for item in

[0, 1, 0.0, 0.1, 0j, 1j, [], [0], (), (0,), {}, {’a’:’A’}, None]]

[’0␣is␣False ’,
’1␣is␣True’,
’0.0␣is␣False’,
’0.1␣is␣True’,
’0j␣is␣False’,
’1j␣is␣True’,
’[]␣is␣False’,
’[0]␣is␣True’,
’()␣is␣False’,
’(0,)␣is␣True’,
’{}␣is␣False’,
"{’a’:␣’A’}␣is␣True",
’None␣is␣False ’]
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Python
–
High order functions.
map(), filter()
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High order functions

High order functions are functions that can be given as arguments and
can have functions as returned values.

Example in Haskell:

> map :: (a -> b) -> [a] -> [b]
> map f [] = []
> map f (x:xs) = (f x):map f xs

map (\x -> x^2) [1,2,3,4] is evaluated to [1,4,9,16]

But then, how can we do that in Python? Quick reminder: In Python,
a function is an object!
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map()

map(<FUNC>, <SEQ>[, <SEQ>, ...]) expects exactly one function
and at least one sequence as arguments. If more sequences are
specified as a sequence, they will be considered as additional
arguments to the function. If the size does not fit, the corresponding
elements will be considered as None.

> def pow_2(n, e=2):
> return n**e

> map(pow_2 , range (1,5))
[1, 4, 9, 16]
> map(pow_2 , range(1,5), range (2,6))
[1, 8, 81, 1024]
> map(lambda n:n**2, range (1,5))
[1, 4, 9, 16]
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Exercise – map() with lambda

Create the lambda expression in the map() of the previous slide in
order to make the functionality of the pow_2(n,e=2) corresponds to
the function.

15 of 25



Proper high order functions

We can also write our proper high order functions in Python. Here is a
small example for f (x) = x + 3 and g(x) = f (f (x)):

> def f(x):
> return x + 3

> def twice(function , x):
> return function(function(x))

> print(twice(f, 7))

What the result looks like ?
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filter()

filter(<FUNC> | None, <SEQ>) creates a list in which the use of
FUNC return True. If FUNC = None, the only elements that are copied
into the new sequence are True. If SEQ is a tuple or a string, the
returned type depends on the input type, otherwise a list is always
returned.

> def is_odd(n):
> return n%2

> filter(is_odd , range (4))
[1, 3]
> filter(None , range (4))
[1, 2, 3]
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Python
–
More about sort()
cmp(), key, reverse
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sort()

Hitherto we have only used sort() with the default values, even with
the dual functions. Let us remind quickly
sort([cmp[, key[, reverse]]]):

cmp A new function of comparison which must return −1, 0
or 1.

key Function that defines which property has to be sorted in
the sequence of elements (key=str.lower or
lambda (k,v) : v)

reverse If True, the sort order is reversed.
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sort()

> mydict = { ’b1’: (1, 6), ’b3’: (1, 3),
’a4’: (1, 2), ’b5’: (1, 7), ’a6’: (3, 7) }

> sort(mydict.iteritems ())
[(’a4’, (1, 2)),
(’a6’, (3, 7)),
(’b1’, (1, 6)),
(’b3’, (1, 3)),
(’b5’, (1, 7))]

The function sort() sorts all iterable data types and returns a list
with the sorted elements. We see here that they are sorted by the keys.
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sort()

to reverse the order → reverse=True

> sorted(mydict.iteritems(), reverse=True)
[(’b5’, (1, 7)),
(’b3’, (1, 3)),
(’b1’, (1, 6)),
(’a6’, (3, 7)),
(’a4’, (1, 2))]
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sort()

Suppose that the tuple value defines a fraction. How could we sort
them by ?

> def cmpN(x, y):
> return cmp(float(x[1][0]) / x[1][1] ,

float(y[1][0]) / y[1][1])

> sorted(mydict.iteritems(), cmp=cmpN)
[(’b5’, (1, 7)),
(’b1’, (1, 6)),
(’b3’, (1, 3)),
(’a6’, (3, 7)),
(’a4’, (1, 2))]
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sort()

That was a very ugly notation. Why not directly access the tutelage?
We have to mess around ...

> def cmpNew(x, y):
> return cmp(float(x[0]) / x[1],

float(y[0]) / y[1])

> sorted(mydict.iteritems(), cmp=cmpNew ,
key=lambda (k,v):v )

[(’b5’, (1, 7)),
(’b1’, (1, 6)),
(’b3’, (1, 3)),
(’a6’, (3, 7)),
(’a4’, (1, 2))]
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sort() – key() and cmp()

When using cmp and key there is several things to consider:
• cmp() is carried out at each comparison.
• The function key is executed once per element, before the cmp()
sorting step.

• Optimal: Precomputation, cmp() is performed before the actual
comparison, already running in key!
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Exercise – sort()

Superimposed functionality of the function cmpNew, so that the
precomputing is already conducted once in the term lambda and no
additional cmp() must be defined.
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