
Script language: Python
Introduction

Cédric Saule

Technische Fakultät
Universität Bielefeld

10. Februar 2016

Python
–
Introduction
Properties, extensions, first steps.

2 of 18

Python – Versions overview.

• Dynamic programmaming language, unfortunately, it is most of the
time known as a scripting language.

• First version: 1991.

Current version :
3.4.2 Current stable Release

• Many performances and improvements.
• Syntax partially modified.
• No Backward compatibility before 2.X.

2.7.5 • 2.X are the Python versions most widely used.
• From 2.6 late implementations to 3.X functionalities.
• Many modules, which are not compatible with the

3.X functionalities.
• Backward compatibilty due to the autoconverter →
2to3.

3 of 18

Python – Properties.

• Optimized for readability.
• Few keywords.
• Multi OS-Support.
• Multi-paradigm: imperative, object / aspect oriented and functional
programming.

• Excellent help systems are integrated.

4 of 18

Python – Internals.

• Strongly object-oriented → Everything is an object!
◦ No literals (no magic numbers).
◦ Strongly typed.
◦ Functions are objects: Can be overloaded during excution →

Dependency Injection.

• Blocks are characterized by TAB indents.
• Duck typing : Variables are typed, not the underlying objects!

5 of 18

Python – Features and enhancements.

Python-Shell Interactive Python mode.
IDLE Built-in development environment.

iPython Powerful alternative interactive shell with lots of magic™.
Cython We can extract parts of the code in Python and to run

them optimaly on the machine.

6 of 18

The first script.

Text editor vi(m), emacs, gedit, kate → NO word processor.
File extension *.py

Preamble #!/usr/bin/env python

Rights chmod u+x <File name>

#!/usr/bin/env python
print("My␣first␣output.")

$ chmod u+x test.py
$./test.py

7 of 18

iPython – An alternative Python Shell.

• Tab-Completion.
• Integrated help on ? and ??.
• OS Shell: !<COMMAND>
• Integrated debugger.
• Command history.
• Tutorial: %magic

THE tool of choice for interactive experiments!

Start $ ipython End > quit or CTRLˆd

8 of 18

Exercise – First steps

Check the following expressions in the interactive shell (iPython) and
try to explain what is happening here and why:

> 1/7
> 1.0/7.0
> print 1./7

> 0.9999999999999
> print 0.9999999999999

> 0.9999999999999*9/9
> 0.9999999999999/9*9

9 of 18

Python
–
Introduction
Object references, namespaces, Callables, GC

10 of 18

Objects, references and instances.

Python is strongly object-oriented.
• „primitive“ data structures like int are objects.
• Functions are objects.
• In fact, everything in Python is an object.

11 of 18

Objects, references and instances.

> 23 # Instance of type int

> a = 23 # a is a reference on an instance
of type int with the value 23.

> b = a # b references the same instance than a.

> b = 46

Which value contains a and b ?

12 of 18

Objects, references and instances.

Basic functions you need to know:
dir() List all objects properties (namespaces, Callables).

type() Return the type of the given object.
help() Call the help.

They are also called builtin_function_or_method

13 of 18

Exercises – Who I am and what can I do?

Consider the following expression:

> text = "Hello␣world!"

Apply the commands type(), dir(), and help() on the variables
text. What happens here?

Look at using help() the help for functions/type.

14 of 18

Namespaces and Callable

Create a complex number c=1+2j. Print the real and imaginary parts
of this number by using real and imag and finally compute the
conjugate of this complex number.

> imag(c)
> c.imag

> c.real

> c.conjugate
> c.conjugate ()

15 of 18

Namespaces and Callable

Create a complex number c=1+2j. Print the real and imaginary parts
of this number by using real and imag and finally compute the
conjugate of this complex number.

> imag(c) # ->NameError
> c.imag # Namespace

> c.real # Namespace

> c.conjugate # The object ’s function
-> Callable
> c.conjugate () # Call

Namespaces can be compared with attributess (Java) and Callable
with function (→ We have to __cal__() implements the functions.)
16 of 18

Identity comparison vs. content comparison

> a = "Hello␣World!"
> b = a
> c = "Hello␣World!"

> a == b
True
> a == c
True
> a is b # id(a) == id(b)
True
> a is c # id(a) == id(c)
False

• Identity of an object:
id()

• Operator of identity
comparison : is

• Operator of content
comparison: ==

17 of 18

Garbage Collector

The same as Java, Python has a Garbage Collector, which cleans
unneeded instances. An instance can be deleted from the PC when
there is no anymore reference to it.

> a = 23
> a = 46 # no reference to instance

(int :: 23)
-> can be removed by the GC
and free memory.

> del(a) # del() removed references explicitly

18 of 18

