
Script language: Python
Data structures

Cédric Saule

Technische Fakultät
Universität Bielefeld

10. Februar 2016

Immutable vs. Mutable

Previously known types: int and string.

• Both are Immutable → but what does it mean?
◦ Numbers are fix and cannot be modified.
◦ New allocation by: number = number + 1
◦ When assigning, a new object is created with the desired value.

• So what are Immutable for?
◦ Mutable (variable data types) use Immutable for addressing.
◦ Be referred to as hashable.
◦ Same Immutable reference (in part) to optimize memory on the same

memory address.

2 of 38

Data types in Python.

There is different „built-in“ (immutable, mutable) data type:
Logical values bool

Numbers int, (long), float, complex
Sequential data string, tuple, list
Mapping dict
Sets set, frozenset

Special cases: None.
• “Worth „nothing
• Met in:

Java null Perl undef

3 of 38

Python
–
Logical
Boolean, Truth tests, equality operators.

4 of 38

What are logical values in Python?

• Logical values are clearly defined by bool.
◦ True.
◦ False.

• In addition, each truth test result is an object True.

5 of 38

What are logical values in Python?

The following statements are considered as False:
None
False

0, 0L, 0.0, 0j the number 0
, ”, (), [] Empty sequential data type

{} Empty mapping.

Special case for some classes which implement one of the following
methods and would provide this as a return value: False or 0.

• __nonzero__() • __len__()

6 of 38

Boolean operators

The following operators replace the usual shortcuts ||, && !,
respectively sorted by order of priority. In addition, these operators are
also special functions which are their own input value and have the
following outputs:

X or Y logical OR, as a function: If X == False, then Y,
otherwise X

X and Y logical AND, as a function: If X == True, then Y,
otherwise X

not X logical negation, (no !; Negate the statement fowarded
by the command line.)

7 of 38

Comparison operators

• can be concatenated:
X < Y <= Z is equivalent to X<Y and Y<=Z, where the last
expression is evaluated only if the first is evaluated as True.

• All objects can be compared.
• Objects of different types cannot be equal but they are always
sorted in the same order → so, in a heterogeneous array, they will
be sorted on the same order.

• Objects can be evaluated as equal by implementing __cmp__() but
they must be of the same type.

8 of 38

Comparison operators

< smaller than
> greater than

== equal
is objects identity

<= smaller or equal
>= greater or equal
!= different

is not object with different
identities.

• <, <=, > and >= throw aTypeError when we compare complex
numbers.

• With sequential data types, it exists two other comparison
operators.

in is included. not in is not included.

9 of 38

Python
–
Numbers
Integer, Float, Complex

10 of 38

Numbers

Four different types of numbers exist in Python 2.X.
Integer/Long Integers

100 # Integer
100L # Long
sys.maxint # Maximal size for integers.

Bigger ones are
automatically converted

into long.

Float Floating point numbers, 1. or -55.3
Complex Complex numbers, 1.5+2j

11 of 38

Numbers – Special & Operations

• Since the Python 2.6 and 3, Integers and Longs have been merged.
• When a range number is too large for an Integer, it is automatically
converted into Long.

• int <OPERAND> int = int and float <OPERAND> int = float

+, -, *, / ... ll
// Integer portion of the

division.
% Modulo

-X Opposite of X
+X Unchanged X

Y**Z Y Z

Shorthand: x <OPERAND>= y → x = x <OPERAND> y

12 of 38

Numbers – Important functions

abs() Absolute value
long() Output as long

complex(r, i) Complex number,
(r)Real part,
(i)Imaginary part

divmod(x,y) (x // y, x % y)

int() Output as int
float() Output as float

c.conjugate() Computes the
conjugate of a
complex number

math.* See math-Module

13 of 38

Exercises – Operators precedence

Compute the following operations. What is the the operators
precedence?

> 4 * 3 + 6
> 4 + 3 * 6
> 100 / 5 % 3
> 5 * 6 ** 7
> res = 7.
> n = 5
> res //= -n

14 of 38

Python
–
Sequential data types.
String, Tuple, List

15 of 38

Sequential data types

Sequential data types can generally be seen as containers for
sequences of objects and their references. For Strings, Lists and
Tuples, we apply the same standard access operators.

> s = "Hello␣you!"
0123456789

> s[2:7] > s[0]
’llo␣y’ ’H’

> list = [s, 54, ’World’]
0 1 2

> list [1] > list [2][0:2]
54 ’Wo’

16 of 38

Sequential data types – Operations & Functions

x in s True, if x is in s,
otherwise False.

s*n, n*s Concatenates n copies
of s.

s[i] Object in the i’th
position.

s[i:j] Slice from i to j.
len(s) Size of s.

s.index(i) First occurrence of i
in s

x not in s False, if x is in s,
otherwise True.

s+t Concatenation of s
and t.

s[i:j:k] Slice from i to j
with an increase of k.

min(s) Smallest element in
s.

max(s) Greatest element in
s.

s.count(i) Number of all i in s.

17 of 38

String

• String of any length.
• Strings are instanciated between "␣" or ’␣’
• String indices begin with 0 and the last index is: len(string)-1.
• Immutable → Change of form s[0] = "a" not allowed.
• Escape character: „\ “.
• Only ASCII characters can be processed easily into 2.x.
◦ String != Unicode
◦ In Python 3.x, both types were merged for the first time.

s = "I␣am␣a␣string␣of␣size␣24"

18 of 38

String – Important methods

str(<INPUT>) INPUT as string.
count(sub[, start[, end]]) Number of non-overlapping substrings sub.
endswith(suffix[, start[, end]]) True, if the string finishes with
suffix, then False; Can also be a String with a tuple.

find(sub[, start[, end]]) Index Position of the first occurence of sub,
returns -1 otherwise.

r/lstrip([chars]) Removes the string chars from left or right, no
parameters or None space. If you want to strip on both sides, use
strip([chars]).

• Specify optional start and end in slice notation.

19 of 38

String – Important methods

partition(sep) The string is split at sep; Returns a 3-uple:
(prefix, sep, suffix), if sep is not found, we will have
(string,’’,’’).

split([sep[, maxsplit]]) Split the String after each sep if it is given,
otherwise after each white space. maxsplit specify the maximal
number of plit parts.

capitalize() The first letter is in capital, the others are in small.
swapcase() Small letters become capital and vice versa.
join(<ITERABLE>) starts all elements from ITERABLE to the String.

20 of 38

Exercise – String and numbers

A first small exercise on the theme of types, conversions and
modifications:

1. Create the number z with the value 4353,3.
2. Convert it into string and split it by the point and save the result

in your own variable l.
3. Add 1 to the integer part and save it again as string in l.
4. Overwrite z, now it should be in the front of the decimal point and

the modified integer value of l should be behind the point.

z and l and their contents should always be of the same type!

21 of 38

Tuple

• No changeable list → Immutable.
• Any length.
• Elements can be of different types.
• Notation:
◦ Content is between parentheses (...).
◦ Listed objects will be comma-separated.

> s1 = (u"are" ,1)
> suffix = "tuple"
> _tuple = (s1, 1337, suffix)
> _tuple

((u"are", 1), 1337, "tuple")

22 of 38

List

• Changeable list → Mutable.
• Any length.
• Elements can be of different types.
• Notation:
◦ Content is between square brackets [...].
◦ Listed objects will be comma-separated.

> s1 = (u"are" ,1)
> suffix = "tuple"
> _list = [s1, 1337, suffix]
> _list [2] = "list"
> _list

[(u"are", 1), 1337, "list"]

23 of 38

Exercise – (Im)mutable

1. Create a variable tuple as seen on the tuple slides.
2. Instanciate a variable of type list with the content of the _tuple.

Modify the list so that its content be the same as _list.
3. Convert back into the first list in tuple and set the content once

again in a new variable of tuple.

Use the functions list() as well as tuple().

24 of 38

Operations on sequential mutable data types.

Replace and remove references:
s[i] = x Reallocation.
s[i:j] = t Slice replacement with iterable t.

s[i:j:k] = t Interval increased with k with the elements of t.
s.insert(i, x) x an index i slide → s[i:i] = [x].
del s[i(:j(:k))] Drop elements, j and k are optional.

25 of 38

Operations on sequential mutable data types.

Find references, change data structures:
s.index(x[,i[,j]]) Index of the elements x

→ s[k] == x and i <= k < j.
s.remove(x) x is deleted from s → del s[s.index(x)].
s.extend(x) Adds all element of x to s.

26 of 38

Exercises – Lists

Create a List with these elements: 1, 2, 3, 4, 5, 6, 7, 8, 9

• Remove the first element.
• Remove the first element and add it again to the list.
• Remove the second and third element.
• Replace the forth element with the size of the list.
• Append the list with [10, 11, 12] at the end of the list.
• Append the list with [10, 11, 12] between the elements 7 and 8.

Give each step from the list.

27 of 38

Operations on sequential mutable data types.

List as Queue:
s.append(x) Adds x to s → s[len(s):len(s)] = [x].

s.pop([i]) Delete the last elements of the list and return them →
x = s[i]; del s[i]; return x.

> list = []
> store = list.append
> store(’apple’)
> store(math.pi)
> list

[’apple’, 3.141592653589793]

28 of 38

Operations on sequential mutable data types.

Change objects order:
s.reverse() Reverse elements order.

s.sort([cmp[, key[, reverseP]]]) ...

• Both methods change the sequential data structure directly
◦ No returned value.
◦ Memory efficient.

• Particularity of sort(...): Details for cmp-Function in Advanced
data structures.

29 of 38

Exercises – Reverse strings

Write a short script that reverses a given string. So Here I am! would
become !ma I ereH.

30 of 38

Python
–
Mapping data types.
Dict[ionary] (Hashmap)

31 of 38

Mapping data types. – dict

• Until now, dict is the only mapping data type in Python.
• This data type is mutable.
• It consists of unordered pairs of key : value.
◦ key must be hashable → immutable!!!
◦ value can be of any type.
◦ Caution when you use numbers as key.

• Equivalent point to the same value: 1 == 1.
• float very inappropriate (floating point number!!11ELF.)

• Standard notation:
dict1 = {key0: value0, key1: value1, key2: value2}

• Specified in standard notation or on dict’s constructor.

32 of 38

Dictionary creation

dictionaries can be instanciated by the standard notation or will be
instanciated through the call of the following constructors.

class dict (** kwarg)
class dict(mapping , **kwarg)
class dict(iterable , **kwarg)

Example:

> a = dict(one=1, two=2)
> b = {’one’: 1, ’two’: 2}
> c = dict(zip([’one’, ’two’], [1, 2]))
> d = dict ([(’two’, 2), (’one’, 1)])
> e = dict({’one’: 1, ’two’: 2})
> a == b == c == d == e
True
33 of 38

Read and modify a dictionnary.

A value can be directly accessed by its key (Read, Modification,
Addition of new mappings):

> b = {1: ’on’, 2: ’two’}
> b[1]

’on’

> b[1] = ’one’
> b[1]

’one’

> b[3] = ’three’
> b

[2; ’two’, 3: ’three ’, 1: ’one’}

34 of 38

Python
–
Set Data types
Mix – Set, Frozenset

35 of 38

Set, Frozenset – Mix

set and frozenset are containers for unique element.
Mathematically, they can be considered as sets.

• Each object (element) must be immutable.
• There is some methods to specific mixing: union(),
intersetion(), issubset(),issuperset(),isdisjoint(), ...

We give two different implementations for mixing:

set Variable mix
frozenset Non-variable mix → immutable

36 of 38

Set, Frozenset – Example of code

> s = set(’abc’)
> s

{’a’, ’b’, ’c’}

> s.update(’x’, [8])
> s

{8, ’a’, ’b’, ’c’, ’x’}

> s.intersection(’ac8’)
{’a’, ’c’}

37 of 38

Set, Frozenset

• Constructors: class set([iterable]),
class frozenset([iterable]).

• Short hands-Instantiation without constructor: lem1, elem2,
..., elemNelem1, elem2, ..., elemN.

• In sets of sets the referenced set type must be a frozenset.

Other methods and explanations: Python 2.7-Documentation

38 of 38

http://docs.python.org/2/library/stdtypes.html#set-types-set-frozenset

