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Interprocess communication

Parent and child processes can communicate via:

● signals

● pipes

● shared memory
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Signals

● a technique to pass messages to a running process

● e.g. a division by zero causes signal SIGFPE

● processes can react to a signal by:

1. ignoring it

2. perfoming a default action (SIGFPE → terminate)

3. calling a custom made function (signal handler) when signal is
triggered 
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POSIX Signals (excerpt)

name value default meaning
HUP 1 T Hangup detected

INT 2 T Interrupt from Keyboard

ILL 4 T Illegal Instruction

FPE 8 T C Floating point exception

KILL 9 T ! Termination signal

PIPE 13 T Write pipe with no readers

TERM 15 T Termination signal

CHLD 17 I Child terminated

CONT 18 R Continue if stopped

STOP 19 S ! Stop process

T: terminate, C: continue, ! : can't be caught, R: resume, S : stop, C :core dump
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os.kill()

In Python os.kill() sends a signal to another process:

os.kill(pid, sig)

● sends signal sig to process pid

● sig is either the signals int number or its symbolic name
(signal.SIG*)

● no return value, but error state if pid does not exist.

Signalling a process group: 

os.killpg() or negated pid in os.kill()
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Catching signals

● signal handler is a function with exactly two arguments: 

1. signal number

2. interrupted stack frame

● signal handler must be registered
signal.signal(signalnum, handler)

● signalnum: integer value of the signal

● handler: function to be called (signal handler)

● Note: do not use computationally demanding calls in a signal
handler!
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Hands on!

1. Write a Python program which infinitly prints „I'm sleeping“ every 5
seconds.

2. How to terminate the above program?

3. Extend your program such that it can react to „keyboard interrupt
signals“ (SIGINT). It shall terminate after the THIRD catched
SIGINT signals.
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Pipes

● Original form of Unix Interprocess Communication (IPC) [1973]

● useful for many scenaries

● Short comming: no identifier, thus only usable by related
processes.

● revised 1983, by introducing FIFOs (named pipes)

● Pipes and FIFOs are used by the common read and write file 
operation functions
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Pipes in Python

● create a pipe via os.pipe()
inpipe, outpipe = os.pipe()

● write to a pipe:
os.write(outpipe, <MESSAGE>)

● read from a pipe:
os.read(inpipe, <BUFFERSIZE>)

fdHandle = os.fdopen(inpipe)
line = fdHandle.readline()   # a single line
lines = fdHandle.readlines() # all lines
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Pipes in Python

● pipes are buffered, always! → no real-time output.
● enforcing real time: os.read(inpipe, 1)
● remember to close your pipes!

Pipes might be replaced by os.dup2():
stdin = sys.stdin.fileno()
stdout = sys.stdout.fileno()
parentStdin, childStdout  = os.pipe() 
childStdin,  parentStdout = os.pipe()
 
if(os.fork() ==0):

# child process
os.close(parentStdin)
os.close(parentStdout)
os.dup2(childStdin,  stdin)
os.dup2(childStdout, stdout)
print("Hallo Elternprozess!")
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Named Pipes in Python

Arbitrary (i.e. unrelated) processes communicate via named pipes.
Named pipes are handled like files by the OS.

if not os.path.exists(pipe_name):
os.mkfifo(pipe_name)

pipeout = os.open(pipe_name, os.O_WRONLY)
os.write(pipeout, 'Number %03d\n' % counter)

pipein = open(pipe_name, 'r')
line = pipein.readline()
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os.pipe()

pipein, pipeout = os.pipe()

● Opens a pair of file descriptors, which are connected by a pipe.

Pipe

WH RH

Process

Kernel

Process



Center for Biotechnology
Bielefeld Bioinformatics Service

os.pipe()

● usually in combination with a fork()

● parent opens first file handle and closes the other

● child acts reversly: closes first file handle and opens the other

pipe

WH RH

Prozess

Kernel

WH RH

Parent Child

fork()
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Hands on!

Write a program, which

1. opens a pipe,

2. forks,

3. sends a message from the parent to the child,

4. which ultimately prints the message.

pipe

WH RH

Process

Kernel

WH RH

Parent Child

fork()
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Bidirectional Pipes

● presented pipes were half-duplex or unidirectional.

● passing information in one direction

● bi-directional communication requires two pipes → one per
direction
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Hands on!

Write a program, that forks and can bi-directionally communicate between
parent and child. Do so by:

1. creating two pipes A and B

2. os.fork()

3. in parent 

1. close reader of pipe A

2. close writer of pipe B

4. in child

1. close writer of pipe A

2. close reader of pipe B

5. print messages from the parent in the child and vice versa!
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Hands on!

pipe #1

WH RH

process

kernel

WH RH

Parent Child
fork()

pipe #2
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