
Center for Biotechnology
Bielefeld Bioinformatics Service

Netzwerkprogrammierung – Network Programming

Interprocess Communication
Signals and Pipes

Jan Krüger
jkrueger@cebitec.uni-bielefeld.de

Alexander Sczyrba
asczyrba@cebitec.uni-bielefeld.de

mailto:jkrueger@cebitec.uni-bielefeld.de
mailto:asczyrba@cebitec.uni-bielefeld.de

Center for Biotechnology
Bielefeld Bioinformatics Service

Interprocess communication

Parent and child processes can communicate via:

● signals

● pipes

● shared memory

Center for Biotechnology
Bielefeld Bioinformatics Service

Signals

● a technique to pass messages to a running process

● e.g. a division by zero causes signal SIGFPE

● processes can react to a signal by:

1. ignoring it

2. perfoming a default action (SIGFPE → terminate)

3. calling a custom made function (signal handler) when signal is
triggered

Center for Biotechnology
Bielefeld Bioinformatics Service

POSIX Signals (excerpt)

name value default meaning
HUP 1 T Hangup detected

INT 2 T Interrupt from Keyboard

ILL 4 T Illegal Instruction

FPE 8 T C Floating point exception

KILL 9 T ! Termination signal

PIPE 13 T Write pipe with no readers

TERM 15 T Termination signal

CHLD 17 I Child terminated

CONT 18 R Continue if stopped

STOP 19 S ! Stop process

T: terminate, C: continue, ! : can't be caught, R: resume, S : stop, C :core dump

Center for Biotechnology
Bielefeld Bioinformatics Service

os.kill()

In Python os.kill() sends a signal to another process:

os.kill(pid, sig)

● sends signal sig to process pid

● sig is either the signals int number or its symbolic name
(signal.SIG*)

● no return value, but error state if pid does not exist.

Signalling a process group:

os.killpg() or negated pid in os.kill()

Center for Biotechnology
Bielefeld Bioinformatics Service

Catching signals

● signal handler is a function with exactly two arguments:

1. signal number

2. interrupted stack frame

● signal handler must be registered
signal.signal(signalnum, handler)

● signalnum: integer value of the signal

● handler: function to be called (signal handler)

● Note: do not use computationally demanding calls in a signal
handler!

Center for Biotechnology
Bielefeld Bioinformatics Service

Hands on!

1. Write a Python program which infinitly prints „I'm sleeping“ every 5
seconds.

2. How to terminate the above program?

3. Extend your program such that it can react to „keyboard interrupt
signals“ (SIGINT). It shall terminate after the THIRD catched
SIGINT signals.

Center for Biotechnology
Bielefeld Bioinformatics Service

Pipes

● Original form of Unix Interprocess Communication (IPC) [1973]

● useful for many scenaries

● Short comming: no identifier, thus only usable by related
processes.

● revised 1983, by introducing FIFOs (named pipes)

● Pipes and FIFOs are used by the common read and write file
operation functions

Center for Biotechnology
Bielefeld Bioinformatics Service

Pipes in Python

● create a pipe via os.pipe()
inpipe, outpipe = os.pipe()

● write to a pipe:
os.write(outpipe, <MESSAGE>)

● read from a pipe:
os.read(inpipe, <BUFFERSIZE>)

fdHandle = os.fdopen(inpipe)
line = fdHandle.readline() # a single line
lines = fdHandle.readlines() # all lines

Center for Biotechnology
Bielefeld Bioinformatics Service

Pipes in Python

● pipes are buffered, always! → no real-time output.
● enforcing real time: os.read(inpipe, 1)
● remember to close your pipes!

Pipes might be replaced by os.dup2():
stdin = sys.stdin.fileno()
stdout = sys.stdout.fileno()
parentStdin, childStdout = os.pipe()
childStdin, parentStdout = os.pipe()

if(os.fork() ==0):

child process
os.close(parentStdin)
os.close(parentStdout)
os.dup2(childStdin, stdin)
os.dup2(childStdout, stdout)
print("Hallo Elternprozess!")

Center for Biotechnology
Bielefeld Bioinformatics Service

Named Pipes in Python

Arbitrary (i.e. unrelated) processes communicate via named pipes.
Named pipes are handled like files by the OS.

if not os.path.exists(pipe_name):
os.mkfifo(pipe_name)

pipeout = os.open(pipe_name, os.O_WRONLY)
os.write(pipeout, 'Number %03d\n' % counter)

pipein = open(pipe_name, 'r')
line = pipein.readline()

Center for Biotechnology
Bielefeld Bioinformatics Service

os.pipe()

pipein, pipeout = os.pipe()

● Opens a pair of file descriptors, which are connected by a pipe.

Pipe

WH RH

Process

Kernel

Process

Center for Biotechnology
Bielefeld Bioinformatics Service

os.pipe()

● usually in combination with a fork()

● parent opens first file handle and closes the other

● child acts reversly: closes first file handle and opens the other

pipe

WH RH

Prozess

Kernel

WH RH

Parent Child

fork()

Center for Biotechnology
Bielefeld Bioinformatics Service

Hands on!

Write a program, which

1. opens a pipe,

2. forks,

3. sends a message from the parent to the child,

4. which ultimately prints the message.

pipe

WH RH

Process

Kernel

WH RH

Parent Child

fork()

Center for Biotechnology
Bielefeld Bioinformatics Service

Bidirectional Pipes

● presented pipes were half-duplex or unidirectional.

● passing information in one direction

● bi-directional communication requires two pipes → one per
direction

Center for Biotechnology
Bielefeld Bioinformatics Service

Hands on!

Write a program, that forks and can bi-directionally communicate between
parent and child. Do so by:

1. creating two pipes A and B

2. os.fork()

3. in parent

1. close reader of pipe A

2. close writer of pipe B

4. in child

1. close writer of pipe A

2. close reader of pipe B

5. print messages from the parent in the child and vice versa!

Center for Biotechnology
Bielefeld Bioinformatics Service

Hands on!

pipe #1

WH RH

process

kernel

WH RH

Parent Child
fork()

pipe #2

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17

