Link Layer

Inhalt

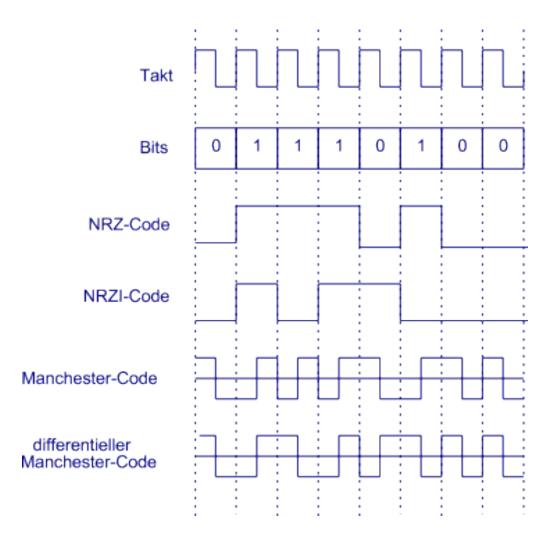
- TCP/IP Modell
- OSI-Referenzmodell
- Leitungscodes
- Dienste der Sicherungsschicht
- MAC-Teilschicht
- Rahmenbildung
- Ethernet
- ► IEEE-802.11 (WiFi/WLAN)

TCP/IP - Modell

- Link Layer (Netzzugangsschicht)
 - Methoden und Protokolle, die auf dem Link arbeiten, mit denen ein Host physikalisch verbunden ist
 - Zwischen benachbarten Knoten
 - ► Techniken zur Datenübertragung zwischen zwei Punkten
 - Auch Protokolle zur Untersuchung der Netzwerktopologie / Auffinden von Nachbarn
 - Beispiele: Ethernet, Wlan, PPP, ARP

- Internet Layer (Internetschicht)
 - ▶ Weiterleiten von Pakten, Routing, Bsp.: IP
- Transport Layer (Transportschicht)
 - ► Ende-zu-Ende-Übertragung,
 - ► Herstellung von Verbindungen zwischen Netzwerkknoten zum Versenden von Datenströmen
 - ► Bsp.: TCP
- Application Layer (Anwendungsschicht)
 - ► Alle Protokolle höherer Schichten
 - Zusammenarbeit mit Anwendungsprogrammen
 - ▶ Bsp.: HTTP

OSI-Referenzmodell


- Open Systems Interconnection Model
- Bitübertragungsschicht (physical layer)
 - Wie werden Bits durch einen Kommunikationskanal übertragen?
 - Welche elektrischen Signale?
 - Richtung (einseitig/beidseitig)?
 - ► Einrichten/Trennen der Verbindung
 - ► Entwurf mechanischer/elektrischer Schnittstellen, physikalisches Übertragungsmedium
 - Bestimmt Leistungsfähigkeit (Geschwindigkeit, Fehleranfälligkeit)

- Sicherungsschicht (data link layer)
 - Dienstschnittstelle für die Vermittlungsschicht bereitstellen
 - ▶ Übertragungsfehler verhindern/behandeln
 - Aufteilung in Datenrahmen
 - Sequentielles Senden
 - Empfangsbestätigung (Bestätigungsrahmen)
 - ► Vermitteln zwischen schnellen Sendern und langsamen Empfängern
- Vermittlungsschicht (network layer)
 - Weitervermittlung der Pakete im gesamten Netzwerk
 - Routing
- Transportschicht (transport layer)
 - ▶ Übernahme von Daten aus höherer Schicht und ggf. Zerlegung dieser
 - ▶ Übergabe an die Vermittlungsschicht
 - Sicherstellung, dass Einheiten korrekt ankommen

- Sitzungsschicht (session layer)
 - Verbindungssteuerung und Prozesskommunikation
 - ▶ Bereitstellen von Diensten für synchronisierten und organisiertem Datenaustausch
- Darstellungsschicht (presentation layer)
 - Umwandlung systemabhängiger Datenformate
 - Datenkompression und Verschlüsselung
- Anwendungsschicht (application layer)
 - Funktionen für die Anwendungen bereitstellen, Verbindung dieser zu den unteren Schichten
 - Daten Ein-/Ausgabe

OSI-Schicht	TCP/IP-Schicht	Beispiel				
Anwendungen (7)						
Darstellung (6)	Anwendungen	HTTP, UDS, FTP, SMTP, POP, Telnet, OPC UA				
Sitzung (5)	Anwendungen					
		SOCKS				
Transport (4)	Transport	TCP, UDP, SCTP				
Vermittlung (3)	Internet	IP (IPv4, IPv6), ICMP (über IP)				
Sicherung (2)	Notzzugong	Ethernet, Token Bus, Token Ring, FDDI, IPoAC				
Bitübertragung (1)	Netzzugang					

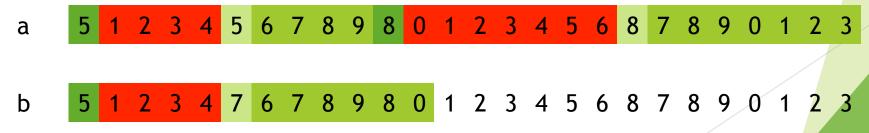
Leitungscodes

Dienste der Sicherungsschicht

- Unbestätigter verbindungsloser Dienst
 - Senden von Rahmen ohne Bestätigung des Empfängers
 - Keine logische Verbindung aufgebaut/freigegeben
 - Kein Versuch Datenverlust zu erkennen/beheben
 - Verwendung bei niedriger Fehlerquote
 - Bsp.: Ethernet
- Bestätigter verbindungsloser Dienst
 - Keine logische Verbindung
 - ► Empfang der Rahmen wird bestätigt
 - Erneutes Senden bei Nichtempfang möglich
 - ► Empfehlenswert bei unzuverlässigeren Kanälen
 - ► Bsp.: IEEE 802.11 (WiFi)

- Bestätigter verbindungsorientierter Dienst
 - Sender und Empfänger bauen Verbindung auf
 - ▶ Variablen, Zähler werden initialisiert
 - Rahmen werden ...
 - Nummeriert
 - ► Garantiert und genau einmal empfangen
 - ▶ Reihenfolge wird garantiert beibehalten
 - Verbindung wird nach Übertragung getrennt
 - Bietet zuverlässigen Bitstrom
 - ▶ Verlorene Bestätigung kann erneutes Senden/Empfangen von Rahmen bewirken

MAC (Medium Access Control)-Teilschicht


- Zugriffssteuerung in Broadcast-Kanälen (Mehrfachzugriffskanäle)
- Wer darf den Kanal benutzen, wenn mehrere Parteien gleichzeitigen Zugriff wollen?
- Besonders in (W)LANs wichtig

Rahmenbildung

- Unterteilung des Bitstroms in Rahmen
- Prüfsumme wird berechnet und in den Rahmen eingefügt
- Anfang/Ende eines Rahmens markieren
 - Bytezahl
 - ► Flagbytes mit Bytestopfen
 - ► Flagbits mit Bitstopfen
 - ► Codierungsverletzungen auf der Bitübertragungsschicht

Bytezahl

- Feld im Header gibt die Bytezahl des Rahmens an
- Bytezählfeld kann durch Übertragungsfehler verfälscht werden
- Anfang des nächsten Rahmens kann so nicht mehr gefunden werden
- Wiederholungsübertragung ebenfalls nutzlos
 - ► Anfang der Wiederholung kann nicht gefunden werden

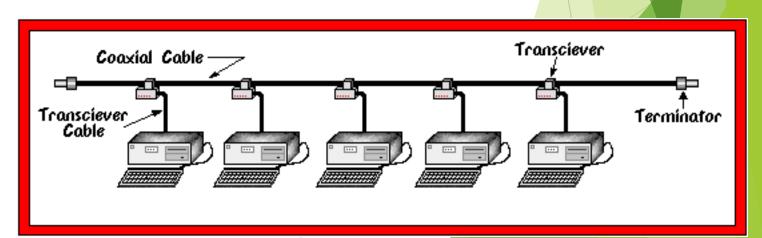
Bytestrom a) ohne Fehler b) mit Fehler

Flagbytes mit Bytestopfen

- ► Flagbyte am Anfang und am Ende des Rahmens
- ► Bei Synchronisationsfehlern kann der nächste Rahmen durch zwei aufeinanderfolgende Flagbytes gefunden werden
- ► Flagbyte kann im Datenstrom vorkommen → Bytestopfen
 - ► Zur Unterscheidung Escape-Byte (ESC) vor "zufälligen" Flagbytes einfügen
 - ► ESC-Bytes ebenfalls vor "zufälligen" ESC-Bytes

Α	FLA G	В		\rightarrow	Α	ESC	FLA G	В		
Α	ESC	В		\rightarrow	Α	ESC	ESC	В		
Α	ESC	FLA G	В	\rightarrow	A	ESC	ESC	ESC	FLA G	В
Α	ESC	ESC	В	\rightarrow	Α	ESC	ESC	ESC	ESC	В

Flagbits mit Bitstopfen


- Nicht an Verwendung von 8-Bit-Bytes gebunden
- ► Rahmen beginnt mit Flagbits 01111110 (0x7E)
- Bei 5 aufeinanderfolgenden 1en wird automatisch eine 0 hinzugefügt (Bitstopfen)
 - Flagmuster kann so nicht im Datenstrom enthalten sein
 - ► Eine minimale Dichte an Bitübergängen wird gewährleistet
- \rightarrow 011011111111111111110010 \rightarrow 011011111011111011111010010
- Rahmenlänge beim Bitstopfen/Bytestopfen hängt vom Inhalt der Daten ab

Codierungsverletzung

- ▶ Beim Codieren der Bits werden häufig Redundanzen eingefügt
- ► Einige Signale können somit im Datenstrom nicht vorkommen
- Diese "Codierungsverletzungen" können zur Rahmenmarkierung genutzt werden

Ethernet - Bitübertragungsschicht

- Thick Ethernet
 - ▶ 500m Segmente, alle 2,5m ein Computer
- ► Thin Ethernet
 - ▶ 185m pro Segment
- Verbindung mehrerer Kabel durch Repeater
 - ▶ Zwei Transceiver nicht weiter als 2,5km, nicht mehr als 4 Repeater
- Manchester-Codierung

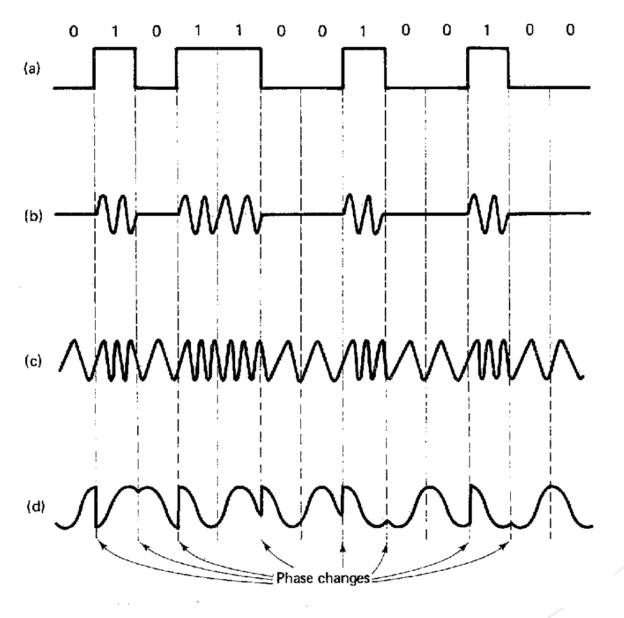
Ethernet - MAC - Teilschichtprotokoll

a	Preamble		Destination Address	Source Address	Туре	Data	Pad	Checksu m
b	Preamble	SoF	Destination Address	Source Address	Length	Data	Pad	Checksum

Rahmenformate: a) Ethernet (DIX) b) IEEE 802.3

- Preamble (8 Byte)
 - Jedes Byte 10101010 (letztes Byte 10101011)
- Destination/Source Address (je 6 Byte)
 - MAC-Adresse des Starts/Ziels
- Type/Length (2 Byte)
 - ► Type gibt Auskunft über verwendetes Protokoll der nächsthöheren Schicht
 - Length gibt die Länge des Rahmens an
 - ► Heute: Werte < 0x600 (1536) als Länge, Werte > 0x600 als Typ
- Daten (bis zu 1500 Byte)
- Pad-Feld (bis zu 46 Byte)
 - Auffüllung des Rahmens auf min. 64 Byte
 - Dient der besseren Unterscheidung von Müll und gültigen Rahmen
 - Wichtig für die Kollisionsentdeckung
- Prüfsumme (4 Byte)

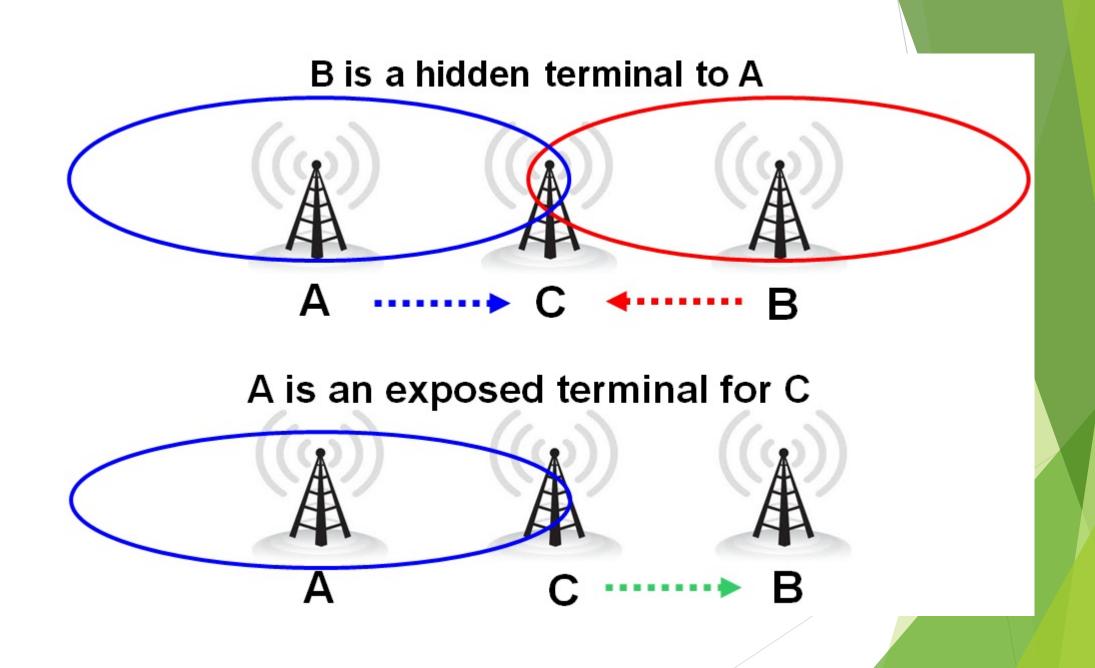
CSMA/CD mit binären exponentiellen Backoff-Algorithmus


- Carrier Sense Mutliple Access with Collision Detection
- ► Sender überprüft Medium vor Übertragung → Verschicken nur bei freier Leitung
- Signalabbruch nach Kollision
- Warten einer zufällig bestimmten Anzahl Zeitscheiben (Zeitintervall) (512 Bitzeiten bzw. 51,2 μs)
 - ▶ Nach i Kollisionen wird zwischen 0 und 2ⁱ 1 Zeitscheiben (bis max. 1023)
 - Nach 16 Kollisionen wird abgebrochen

Switched Ethernet

- Hub verbindet alle angeschlossenen Kabel elektrisch
 - ▶ kein Performancegewinn gegenüber klassischem Ethernet
- Switch legt Rahmen nur auf den passenden Port
 - Bei Vollduplexkabeln keine Kollision möglich
 - ▶ Bei Halbduplexkabeln müssen sich Station und Port mittels CSMA/CD absprechen
 - Puffer, falls zwei Rahmen auf den selben Port gelegt werden sollen
 - Sicherheitsvorteile, da andere Rechner Existenz eines Rahmens nicht bemerken

IEEE-802.11 (WiFi / WLAN)


- Datenübertragung mittels elektromagnetischer Wellen (Radiowellen oder Infrarot)
 - Informationsübertragung mittels Frequenz-, Amplituden- oder Phasenmodulation
- Client ist mit einem Zugangspunkt verbunden (Infrastrukturmodus)
 - ► Zugangspunkte können verbunden sein
 - ► Empfang und Senden von Paketen über den Zugangspunkt
- Ad-hoc-Netwerk
 - Rechner direkt miteinander verbunden
 - Kein Zugangspunkt

a) Binärsignal b) Amplitudenmodulation c) Frequenzmodulation d) Phasenmodulation

IEEE-802.11-MAC-Teilschichtprotokoll

- Übertragen und Gleichzeitiges abhören nicht möglich
- Empfangenes Signal wesentlich geringer als gesendetes Signal
- Somit kein Einsatz von CSMA/CD
- Stattdessen CSMA/CA (CSMA with Collision Avoidance)
 - Start mit zufälligen Backoff
 - Warten bis Kanal frei (eine kurze Zeitspanne (DIFS) wurde nichts gesendet)
 - ► Zeitscheiben werden rückwärts gezählt, Pause wenn der Kanal besetzt ist
 - ► Ziel sendet Bestätigungsrahmen
 - ▶ Bei Fehler exponentieller Backoff wie bei Ethernet

- NAV (Network Allocation Vector) in jedem Rahmen gibt an, wie lange die Übertragung (inklusive Bestätigung) dauern wird
 - Stationen die den Rahmen abhören wissen durch den NAV, dass der Kanal solange belegt ist, auch wenn sie kein physisches Signal empfangen
- Optional: RTS/CTS (Request to Send/Clear to Send)
 - Sendeanfrage/Sendeerlaubnis teilt anderen Stationen mit, dass der Kanal in Kürze benutzt wird
 - ▶ Wenig praktikabel, da nutzlos bei kurzen Rahmen und dem Zugangspunkt
 - ▶ Zudem wirkt es in anderen Situationen nur verlangsamend

IEEE-802.11-Rahmenstruktur

▶ 3 Klassen: Daten, Steuer und Verwaltung

Byte	es 2	2	6	6	6	2	0-231 2	4
	Frame Control	Duration	Address 1 (Empfänger)	Address 2 (Sender)	Address 3	Sequence	Data	Check Sequence

Bsp. Datenrahmen

Bits	2	2	4	1	1	1	1	1	1	1	1
	Version	Type	Subtype	To DS	From DS	More Frag.	Retry	Pwr. Mgt.	More Data	Protected	Order

Frame Control

Frame Control

- Protokollversion
- Feldtyp (Daten, Steuerung oder Verwaltung)
- Subtyp (z.B. RTS oder CTS)
- To-/FromDS-Bits geben an, ob der Rahmen zum Verteilungssystem geht oder von dort kommt
- ▶ More Fragments-Bit gibt an, ob weitere Fragmente folgen
- ▶ Bit-Retry signalisiert eine wiederholte Übertragung an
- ▶ Power Managment signalisiert, dass sich der Sender in den Energiesparmodus begibt
- More Data gibt an, ob beim Sender weitere Rahmen für den Empfänger vorliegen
- Protected Frame zeigt Verschlüsselung des Rahmens an
- Order-Bit zeigt an, dass die genaue Reihenfolge der Rahmen für eine höhere Schicht relevant ist

- ▶ Duration: Dauer des Rahmens und der Bestätigung → für NAV
- Adressen: Sender und Empfänger
 - > 3. Adresse benennt entfernten Endpunkt, da Zugangspunkt als Schaltstelle benutzt wird
- Sequence: Nummerierung der Rahmen um Duplikate zu erkennen
- Data: Nutzdaten
 - ▶ Die ersten Bytes sind im LLC-Format (Logical Link Control)
 - identifizieren die Protokolle höherer Schichten an die die Daten weitergeleitet werden sollen
- Check Sequence: Prüfsumme

Noch Fragen?

Vielen Dank für eure Aufmerksamkeit

Quellen

- ► Andrew S. Tannenbaum, David J Wetherall (2012): Computernetzwerke
- https://en.wikipedia.org/wiki/Link_layer [29.10.2019]
- https://de.wikipedia.org/wiki/Internetprotokollfamilie [29.10.2019]
- https://en.wikipedia.org/wiki/Host_(network) [29.10.2019]
- https://de.wikipedia.org/wiki/Topologie_(Rechnernetz) [29.10.2019]
- https://en.wikipedia.org/wiki/Neighbor_Discovery_Protocol [29.10.2019]
- https://de.wikipedia.org/wiki/Redundanz_(Informationstheorie) [29.10.2019]
- https://de.wikipedia.org/wiki/Ethernet [29.10.2019]
- http://www.maznets.com/tech/10base-5.htm [29.10.2019]

- https://de.wikipedia.org/wiki/MAC-Adresse [29.10.2019]
- https://de.wikipedia.org/wiki/IEEE_802.11 [29.10.2019]
- https://de.wikipedia.org/wiki/Welle [29.10.2019]
- http://www.idn.uni-bremen.de/cvpmm/content/wellen/show.php?modul=3&file=88&right=we_r_05_phase.html [29.10.2019]
- https://www.researchgate.net/figure/from-Tanenbaum-54-a-a-binary-signal-b-amplitude-modulation-c-frequency_fig15_265932194 [29.10.2019]
- https://de.wikipedia.org/wiki/Phasenverschiebung [29.10.2019]
- https://de.wikipedia.org/wiki/Carrier_Sense_Multiple_Access/Collision_Avoidance [29.10.2019]
- https://jindongpu.wordpress.com/2012/03/10/hiddenexpose-terminal-problem/ [29,10,2019]
- https://www.itwissen.info/Ende-zu-Ende-Verbindung-end-to-end-E2E.html [29.10.2019]
- https://de.wikipedia.org/wiki/OSI-Modell [29.10.2019]
- http://www.heineshof.de/wloesch/lan-bituebertragung.html [29.10.2019]
- https://www.computerhilfen.de/info/unterschied-zwischen-wi-fi-und-wlan-schnellerklaert.html [29.10.2019]