
Combining Divide-and-Conquer, the A

�

-Algorithm,

and Successive Realignment Approaches to Speed up

Multiple Sequence Alignment

| Extended Abstract |

Knut Reinert

1

Jens Stoye

2,�

Torsten Will

3,4

Abstract

We present an algorithm that uses the divide-and-conquer alignment approach

together with recent results on search space reduction to speed up the computation

of multiple sequence alignments. The method is adaptive in that depending on the

time one wants to spend on the alignment, a better, up to optimal alignment can be

obtained. To speed up the computation in the optimal alignment step, we apply the

A

�

algorithm which leads to a procedure provably more e�cient than previous exact

algorithms. We also describe our object oriented implementation of the algorithm

and present results showing the e�ectiveness of the procedure.

1 Introduction

Multiple sequence alignment is an important tool in computational biology. Application

areas include sequence assembly, molecular modeling, protein structure-function analysis,

phylogenetic studies, database search, and primer design. Depending on the application, a

cost function is de�ned that assigns a numerical value to each possible alignment, and the

hope is that the lowest scoring alignments reveal important information about the speci�c

problem. One widely used framework for such a cost function is the (weighted) sum of

pairs ((W)SP) score with quasi-natural gap costs [1,3,5]. Since the problem of computing

optimal multiple alignments according to the SP score is NP complete [13], usually in

practice heuristic (tree-based) methods are used. Nevertheless the computation of optimal

multiple alignments has its justi�cation as a means of evaluating heuristic approaches or

as a subprocedure of heuristic alignment methods like the recursive Divide-and-Conquer

Alignment algorithm (DCA) [10, 12]. In fact we will show how to combine an e�cient

procedure for computing optimal multiple alignments with this method such that the

1

Celera Genomics, Informatics Research, 45 West Gude Drive, Rockville, MD 20850, USA

2

German Cancer Research Center (DKFZ), Theoretical Bioinformatics (H0300), Im Neuenheimer Feld

280, 69120 Heidelberg, Germany

3

Universit�at Bielefeld, Research Center for Interdisciplinary Studies on Structure Formation (FSPM),

Postfach 100131, 33501 Bielefeld, Germany

4

Present address: mediaWays GmbH, H�ulshorstweg 30, 33415 Verl, Germany

�

Corresponding author. E-mail: j.stoye@dkfz-heidelberg.de, phone +49-6221-422719, fax +49-6221-

422849

resulting procedure produces increasingly better alignments that converge to an optimal

one.

Formally, an alignment of sequences S

1

; : : : ; S

K

, K � 2, over an alphabet � is a K �!

matrix A = (a

ij

), a

i;j

2 � [f�g, such that ignoring the blank character �, the ith row

reproduces sequence S

i

, and there is no column consisting only of blanks. By A

i

1

;i

2

;:::;i

k

we

denote the projection of A to the sequences S

i

1

; S

i

2

; : : : ; S

i

k

.

For a pairwise projection of A to S

i

and S

j

let c(A

i;j

) be the cost of this projection,

which is usually de�ned as the sum over all substitution costs weighted by a substitution

score matrix, plus a penalty for each gap. Then the overall cost c(A) =

P

i<j

c(A

i;j

) is

called the sum of pairs (SP) cost of the alignment A.

The gap penalty usually depends on the length of the gap. For pairwise alignments, the

class of a�ne gap cost functions is widely acknowledged to yield good results. Although

it is also possible to use a�ne gap costs for multiple alignments, Altschul [1] pointed out

that this is impractical for even a modest number of sequences. He proposed instead a

simpler gap cost function, called quasi-natural gap costs. This function miscounts the true

number of gaps in a multiple alignment by only a small amount and hence is regarded a

good approximation of the a�ne gap cost measure.

Like most alignment problems, the SP multiple alignment problem with quasi-natural

gap costs can be solved by dynamic programming which yields an algorithm with time

complexity O(2

(2K)

N) and space complexity O(N), where N =

Q

i

N

i

with N

i

being the

length of sequence S

i

. This is feasible only for very small problem instances. Gupta et

al. [3] presented a branch-and-bound algorithm whose implementation { called MSA in the

sequel { can optimally align some examples of six sequences of length 250 in a few minutes.

Larger examples, however, require excessive space.

In this paper we apply the so-called A

�

algorithm to multiple alignment. Similar to

the algorithm used in MSA, it computes a shortest path in the dynamic programming

graph, but with rede�ned edge weights, which reduces the search space considerably (see

[4,7,9]). Our two main contributions are (1) to provide an e�cient implementation of the

A

�

algorithm for exactly solving the SP alignment problem with quasi-natural gap costs,

which can be shown to be superior to the Carrillo-Lipman bounding [2] applied in MSA,

and (2) combining this algorithm with the DCA approach in order to develop an iterative

procedure for computing multiple alignments with a nice time-versus-quality tradeo�.

In Section 2 we will review the techniques of Gupta et al. and the A

�

algorithm.

Section 3 describes the DCA method and how it is combined with the optimal alignment

procedure. In Section 4 we give details of our implementation of this algorithm. In Section 5

�nally we present results showing the practicality of the method.

2 The A

�

Algorithm in Multiple Alignment

An alignment of the K sequences can be interpreted as a path in a K-dimensional grid

graph G = (V;E) with a source s and a sink t. In addition we add a dummy node d and

an edge from d to s. A path starting in d and ending with an edge e = (u; v) corresponds

to one possible alignment of the pre�xes S

i

1

; : : : ; S

i

K

induced by v = (i

1

; : : : ; i

K

). (The

dummy node and edge ensure that there is a path corresponding to the empty pre�xes of

all sequences.) Similarly, each path starting with an edge e = (u; v) and ending with an

edge f = (p; t) corresponds to an alignment of the corresponding su�xes of the sequences.

The cost of an edge is the SP cost of the alignment column corresponding to the edge.

Let us denote the set of all paths starting with an edge e and ending with an edge f by

e! f . We denote the shortest path in e! f by e!

�

f and its cost by c(e!

�

f).

Let e = (u; v) and f = (v; w) be two adjacent edges. Then the cost of f preceded by

e is de�ned as c(f je) = c(d !

�

e) + c(f) + gappenalty(e; f), and the cost of the shortest

path ending with f is the minimum of c(f je) over all edges e incident to f .

Of course it is not feasible to compute a shortest path in the full grid graph whose size is

O(N), where, as above, N =

Q

i

N

i

. Gupta et al. [3] applied Dijkstra's algorithm together

with a bounding procedure that reduces the number of edges that have to be visited. The

algorithm uses a priority queue Q in which new edges are only inserted if potentially an

optimal path can pass through them. Given an edge f = (v; w) adjacent to the current

edge e = (u; v), this can be determined by using an upper bound U on the cost of an

optimal alignment (obtained by a heuristic alignment) and a lower bound L(w) on the cost

of an optimal alignment of the su�xes that are induced by w. The edge f = (v; w) is only

inserted into Q if c(f je) + L(w) � U . That means, if the sum of the cost of the optimal

path starting with d and ending with e plus the cost of f , the gap penalty, and the lower

bound L(w), is already greater than an upper bound U , then no optimal alignment can go

through f .

The A

�

algorithm employs basically the same bounding procedure with rede�ned edge

costs. Thereby it speeds up computations by directing the search of a shortest path more

towards the sink node t. (That is why this technique is also called Goal Directed Unidi-

rectional Search (GDUS) [6]). It rede�nes the costs of all edges e = (u; v) 2 E as follows:

c

0

(e) := c(e)�l(u)+l(v), where l(u) is a lower bound for the cost of a shortest path starting

with some edge adjacent to node u and ending with an edge incident to t. If l() ful�lls

the consistency condition c(e) + l(v) � l(u); 8e = (u; v) 2 E, then it is easy to show that

the rede�nition of the edge costs does not change the optimal path and the edge costs are

still positive, so Dijkstra's algorithm with the simple bounding procedure can be used as

before. We can choose l(u) = L(u), because L ful�lls the consistency condition.

It is worthwile noting that it can be shown [4, 7] that the above rede�nition of edge

costs implies the well-known Carrillo-Lipman bound [2]. We used this result to implement

an exact multiple sequence alignment algorithm that provably explores at most as many

nodes as any algorithm using Carrillo-Lipman bounding. In the next section we describe

how we make use of this algorithm in our newly proposed heuristics.

3 Iterative Improvement using DCA

As described above, the A

�

algorithm uses an upper bound U for the alignment cost to

speed up the computation of an optimal alignment. For the computation of the upper

bound we use the Divide-and-Conquer Alignment algorithm (DCA) [10, 12]. We �rst de-

scribe the basic DCA algorithm, and then we describe how the interchangeable use of

DCA and the optimal alignment procedure applied to parts of the sequences can be used

to successively improve an initial heuristic alignment, up to optimality. Alternatively, the

algorithm can be stopped after a predetermined time, yielding a heuristic alignment which

is provably nearer to the optimum the more time was spent.

3.1 The Basic DCA Method

The DCA method allows to quickly compute heuristic multiple sequence alignments. In

contrast to other, tree-based, multiple alignment heuristics, DCA aims at optimizing the

SP alignment score with quasi-natural gap costs, which makes it a logical choice to use in

combination with the A

�

-based optimal alignment algorithm.

In DCA the sequences are cut at certain positions near to their center, in the sequel

called cut positions. This divides the problem of aligning K (long) sequences into the two

problems of aligning the (shorter) K pre�x and K su�x sequences. Assuming that it is

possible to compute optimal alignments of these two sets of shorter sequences, an alignment

of the complete sequences is obtained by just concatenating the pre�x alignment and the

su�x alignment. On the other hand, if the pre�x resp. su�x sequences are still too long

to be aligned optimally, the procedure is applied recursively to the respective sequences

until the sequences are of a length short enough to be tractable for the exact alignment

procedure. To this end, DCA has a parameter Z, the stop length, such that the recursion

is stopped when the sequence length drops below this value.

Of course, the choice of the cut positions is critical for the success of the DCA pro-

cedure, and inadequate cut positions in an early division step can deteriorate the whole

alignment. However, it has been shown that the heuristics of minimal additional costs

using a variation of forward/backward matrices (which are well known from the study of

local sequence similarities and suboptimal alignments) yields very good, in many cases

optimal cut positions. For more details on the de�nition and computation of cut positions,

a number of variations, and e�cient speed-up techniques, see [10].

3.2 Iterative Improvement of the Upper Bound

DCA called with a small value of Z allows to quickly compute an upper bound U for

the A

�

-based optimal alignment procedure. However, the following observation gets us

even further. DCA adheres a time versus quality tradeo�; the larger one chooses the

parameter Z, the (provably) better is the alignment one gets, while the computation time

increases due to the larger optimal alignments to be computed. This motivates an iterative

combination of both DCA and the optimal alignment procedure: Successively, we call DCA

with increasing values of Z where, at each step, we can use the values of the corresponding

partial alignments from the previous step to compute an upper bound for the computation

of an optimal alignment using the A

�

algorithm. Moreover, we can stop at any point

of this procedure and have a heuristic alignment. The longer we wait, the better is the

alignment { up to optimal. To our knowledge this is the �rst iterative alignment algorithm

that provably converges to the optimal alignment.

Note that for iteratively computing better DCA alignments with larger Z values one

only has to compute the cut positions once for the smallest values of Z. Larger Z values are

obtained by \ignoring" intermediate cut positions. However, one has to be careful when

this way fusing two short alignments, because with quasi-natural gap costs, the alignment

score is not additive. Hence, one has to correct for this when using the sum of the scores of

two adjacent alignments as an upper bound for the fused alignment in the next iteration

(as shown in Figure 1).

4 Implementation

We have implemented the algorithms described in this paper as a C++ library of classes for

the alignment of sequences called OMA (which is short for Optimal Multiple Alignment),

built upon the Library of E�cient Data stuctures and Algorithms (LEDA) [8]. Our main

emphasis was to create an open library that easily can be modi�ed and/or extended. The

parts of the library build a hierarchical, modular system, so that one can rearrange blocks

or replace prede�ned modules by ones own classes. While the implemented algorithms

reach state-of-the-art e�ciency, one has to expect, however, that the library approach and

the use of C++ classes will result in a fairly large constant factor in running time and

memory performance.

The three layers of OMA's hierarchy of abstraction levels are:

� the ProgramLayer which implements the general structure of an alignment program

with input/output and the main procedure;

� the AlgorithmLayer which implements the algorithms on a relatively abstract level

(in our case the optimal A

�

alignment procedure, DCA, and iteration);

� the ConcreteLayer which implements the data stuctures used by the other layers

(sequences, alignment, distance matrices, faces, a trie, etc.).

This modular, hierarchical structure allows for the high exibility we intended with our

implementation. The general control structure is quickly de�ned on the ProgramLayer (in

most cases, the supplied library will do), and the algorithms can then easily be built on

the AlgorithmLayer using prede�ned OMA classes, without having to modify the more

complicated classes of the ConcreteLayer.

Our prede�ned library comes with a complete set of classes for the AlgorithmLayer

which implement the methods described in this paper. These classes are built together

in a program called oma which is freely available from the address http://www.poempel.

com/towi/Beruf/oma.html. It is the basis for the computations of the following section.

39600

39800

40000

40200

40400

40600

40800

41000

2 4 8 16 32 64 128 256 512
1

10

100

1000

10000

100000

al
ig

nm
en

t c
os

t

tim
e

[s
]

DCA stop length Z

upper bound
upper bound without end gaps

oma alignment cost
time

Figure 1: The successive improvement of the alignment cost

5 Results

We have run oma on a number of alignment problems from the Benchmark Alignments

Database

1

(BAliBASE) [11]. All runs were performed on a Sun Enterprise 10000 with 2GB

of addressable memory. We used Dayho�'s PAM 250 matrix with quasi-natural gap costs

as the alignment cost function. The general result is that we can align a typical set of 4

to 6 protein sequences to optimality within 10 seconds up to a few minutes. Some more

di�cult examples, however, require excessive computation time and memory. If we stop

the computation after 1 minute, we get a (sub-optimal) alignment in all test cases from

the reference1 subset of BAliBASE. A few detailed results follow.

Figure 1 shows for increasing values of Z the behavior of oma on the test set 1cpt from

reference1 of BAliBASE, containing four cytochrome p450 sequences. The sequence lengths

range from 378 to 434 amino acids, and the average sequence identity is 20%. One can see

the monotonically decreasing alignment cost, and how the cost of the heuristic alignment

(increased by a correction for multiply counted end gaps at fusion points, see Section 3.2)

upper-bounds the score of the oma alignment. A rather close-to-optimal alignment score is

obtained already after a few iterations. However, the comparatively many alignments to be

computed in the beginning also take longer time than the fewer (but still relatively short)

alignments around Z = 32. Even though the upper bound is already very close to the

optimal alignment score, the last step (Z = 512) which yields the optimal alignment takes

by far the longest time to compute. For comparison reasons, we have also run this example

without the A

�

strategy. Here the computation for Z = 512 could not be performed within

1

http://www-igbmc.u-strasbg.fr/BioInfo/BAliBASE/

K length avg. id. max. Z cost time (sec.) memory (MB)

1ubi 4 76- 94 18 64 8626 58.7 29

1wit 5 89-106 17 64 16517 152.1 32

3cyr 4 95-109 31 128 9888 11.5 8

1pfc 5 108-117 28 64 17708 28.2 10

1fmb 4 98-104 49 64 8804 5.8 8

1fkj 5 98-110 44 64 15809 6.6 9

3grs 4 201-237 14 128 23478 97.7 30

1sbp 5 224-263 19 64 43149 >9000 ?

1ad2 4 203-213 30 128 19714 20.0 10

2cba 5 237-259 26 128 40281 2342.4 215

1zin 4 206-216 42 128 19220 11.0 10

1amk 5 242-254 49 128 36659 19.1 9

2myr 4 340-474 16 128 43532 1920 411

1pamA 5 435-572 18 32 86482 98 16

1ac5 4 421-483 29 256 43325 2595 629

2ack 5 452-482 28 128 77137 2046 229

1ad3 4 424-447 47 256 39209 31 24

1rthA 5 526-541 42 512 80350 4737 684

Table 1: Best SP alignment costs obtained with the maximal value of Z that was computable on the

used computer, computation time, and memory usage of oma for di�erent test sets from reference1 of

BAliBASE

the 2GB of available memory. The number of edges explored in the search phase of the

last alignment step which could be run, Z = 256, increases from 1:4 � 10

6

(with A

�

) to

2:2� 10

6

(without A

�

). The computation time increases from 180 seconds to 549 seconds.

Table 1 shows some more results on short (top), medium length (middle), and long

(bottom) sequences.

2

Each block is divided in distantly related, closer, and closely related

sequences (see the column avg. id.). Note that the running time not only depends on

the number and length of the input sequences but { like for most multiple alignment

programs { it also highly depends in the similarity of the sequences.

Acknowledgments

We would like to thank Andreas Dress and Robert Giegerich for helpful conversations,

as well as for continuous support of this project. We would also like to thank the Max-

Planck-Institut (MPI) f�ur Informatik in Saarbr�ucken for generously making their compute

facilities available to us.

References

[1] S. F. Altschul. Gap costs for multiple sequence alignment. J.Theor. Biol., 138:297{309,

1989.

2

For the complete results on all test sets from reference1 of BAliBASE, and for a comparison with the

program MSA, see http://www.poempel.com/towi/Beruf/oma.html.

[2] H. Carrillo and D. Lipman. The multiple sequence alignment problem in biology.

SIAM J. Appl. Math., 48(5):1073{1082, 1988.

[3] S. K. Gupta, J. D. Kececioglu, and A. A. Sch�a�er. Improving the practical space

and time e�ciency of the shortest-paths approach to sum-of-pairs multiple sequence

alignment. J. Comp. Biol., 2(3):459{472, 1995.

[4] P. Horton. String Algorithms and Machine Learning Applications for Computational

Biology. Ph. D. dissertation, University of California, Berkeley, CA, 1997.

[5] J. D. Kececioglu and W. Zhang. Aligning alignments. In M. Farach, editor, Proceedings

of CPM 1998, number 1448 in LNCS, pages 189{208, Berlin, 1998. Springer Verlag.

[6] T. Lengauer. Combinatorial Algorithms for Integrated Circuit Layout. Wiley-Teubner,

Chichester, 1990.

[7] M. Lermen and K. Reinert. The practical use of the A

�

algorithm for exact multi-

ple sequence alignment. J. Comp. Biol., 1999. Accepted for publication. (See also

Technical Report 97-1-028, MPI f�ur Informatik, Saarbr�ucken, Germany, 1997.)

[8] K. Mehlhorn and St. N�aher. The LEDA Platform of Combinatorial and Geometric

Computing. Cambridge University Press, to appear 1999.

[9] T. Shibuya and H. Imai. New exible approaches for multiple sequence alignment. J.

Comp. Biol., 4(3):385{413, 1997.

[10] J. Stoye. Multiple sequence alignment with the divide-and-conquer method. Gene,

211:GC45{GC56, 1998.

[11] J. D. Thompson, F. Plewniak, and O. Poch. BAliBASE: A benchmark alignment

database for the evaluation of multiple alignment programs. Bioinformatics, 15(1):87{

88, 1999.

[12] U. T�onges, S. W. Perrey, J. Stoye, and A. W. M. Dress. A general method for fast

multiple sequence alignment. Gene, 172:GC33{GC41, 1996.

[13] L. Wang and T. Jiang. On the complexity of multiple sequence alignment. J. Comp.

Biol., 1(4):337{348, 1994.

