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Chapter 1

Introduction

1.1 Motivation

It is known that structural variants in the human genome are not only playing an im-

portant role for the genome diversity. They can also be involved in the development

of genetic diseases, for example cancer. Several approaches exist to detect such struc-

tural variants with Next-Generation Sequencing data, such as paired-end mapping. The

simultaneous analysis of different samples, in order to compare structural variants and

distinguish those associated with genetic diseases from individual mutations, is an im-

portant challenge in bioinformatic research.

Wittler [1] introduces aggloDel, a method to detect and unravel overlapping deletions

within different samples. With a paired-end mapping approach, mappings are deter-

mined which potentially span deletions. These mappings are clustered via agglomera-

tive clustering, regarding their similarity of position and size of the represented deletion.

A cluster can be modelled geometrically (in a coordinate system as a triangle), repre-

senting these criteria based on the geometric approach from Sindi et al. [2], as shown

exemplarily in Figure 1.1. The probability for the range of possible deletion sizes in the

third dimension allows to create a certain volume for each cluster. A similarity score is

determined by the normalised intersecting volume of two clusters. Iteratively, the most

similar clusters are merged until only one cluster is left or a certain score threshold can-

not be outreached. If two clusters disagree too much, they form two separate clusters.

In this work aggloIns is presented, an extension of aggloDel with the purpose of find-

ing insertions with the same clustering approach, adapted for insertion clustering. As

insertion clustering shows a behaviour different from that of deletion clustering, several

parameters and filter settings have to be adjusted and evaluated.

1
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Figure 1.1: Deletion visualisation with aggloDel. The x-axis and y-axis indicate the
breakpoint positions. The grey shades imply the possibilities for the deletion sizes in

the third dimension. The yellow triangles show predicted deletions.

1.2 Structure of the Thesis

This work consists of four parts. The second chapter, containing background knowledge,

starts with an explanation of structural variants in association with diseases. It continues

with the presentation of several methods to detect such structural variants and goes

into detail about detecting insertions with paired-end mapping. Furthermore, tools and

formats used in aggloIns are introduced. The third chapter deals with the modelling

of the algorithm and gives an understanding of the clustering process. After that, the

implementation of aggloIns is described. In the fourth chapter, results with simulated

data are evaluated and benchmarked. Afterwards, aggloIns is applied to a real data set

and the results are presented. Conclusions are given in the fifth and last chapter.



Chapter 2

Background

This chapter gives first a short biological background about structural variants in con-

nection with genetic diseases, especially cancer, which is one main motivational aspect

for detecting overlapping insertions. The second section gives an overview of differ-

ent computational methods to detect structural variants without assembling the whole

genome. A more precise explanation for finding insertions with the so called paired-end

mapping approach is found in the third section. The last section contains information

of formats and tools used for aggloIns.

2.1 Structural Variants in Cancer Cells

Genomic variants in the human genome occur in different ways and are not only rele-

vant for genome variation and the diversity of individuals, but also cause genetic diseases

like cancer. These variants can be single nucleotide variants (SNVs), length polymor-

phisms of microsatellite sequences and bigger structural variants (henceforth referred to

as SVs) [3]. SVs include duplications, insertions and deletions and more complicated

rearrangements like inversions or interchromosomal recombination [1, 3, 4]. Insertions

and deletions bigger than 1 kb are called copy number variants (CNVs). Smaller vari-

ants are known as indels.

SNVs are the most frequent genetic variants, but more and more larger SVs are detected

and brought into relation with human diseases [3–5]. Some of these diseases, like dia-

betes or heart diseases, are induced by DNA variants in the germline, which means they

are consequently inherited. Other genetic ailments evolve through lifetime and emerge

individually in different tissues. These somatic modifications can be evoked by various

factors like UV radiation or mutagenic substances. Cancer emerges because of somatic

3
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mutations, which are passed to daughter cells during mitosis. Raphael [4] refers to can-

cer as a “microevolutionary process within a population of cells because of selection for

advantageous mutations”.

There are different types of cancer, which vary in their structural variations. These vari-

ations lead to activated oncogenes, inactivated tumor-suppressor genes or their altered

expression. Mechanisms for the cancer development are, for example, mutations in the

promotor region (and increasing or decreasing the expression), mutations in the gene

(and inactivating it) or fusion genes, created by translocation. In healthy cells, these

oncogenes are responsible for cell growth, so called proto oncogenes. Tumor suppressor

genes are responsible for the regulation of the cell growth. If this regulation balance is

disturbed, uncontrollable cell growth, the tumor formation, occurs [6].

Recurrent chromosomal rearrangements have been found in many patients with the

same disease pattern, for example leukaemia or lymphoma [4]. Fusion genes, which arise

because of translocation of different genes, can lead to cancer, as discovered among oth-

ers in chronic myelogenous leukaemia (CML) [4, 7]. In this example, one of the affected

genes, the ABL gene on chromosome 9, encodes tyrosine kinase and plays an important

role in the regulation of cellular growth. The other gene, BCR (break point cluster

region) is located on chromosome 22. If the fusion gene ABL-BCR is formed, the ABL

gene functionality is disturbed and tyrosine kinase is permanently activated. The com-

bined gene acts as an oncogene, thus results in increased and uncontrolled cell growth.

However, the structural variations vary very often, although the disease patterns are

the same. One example for this is the somatic mutation of the epidermal growth factor

receptor (EGFR) in non-small-cell lung cancer as shown in Figure 2.1. This protein

is a member of the ErbB family, a subfamily of four closely related receptor-tyrosine

kinases [8]. The classical variations which activate the EGFR are in-frame deletions in

exon 19 or a point mutation in exon 21, which are sensitive to reversible EGFR tyrosine

kinase inhibitors (TKIs) and so the tumor growth can be treated. Nevertheless, about

4% of the EGFR mutations contain insertions in exon 20 and preclinical and clinical data

has shown a resistance to EGFR TKIs for the most of the concerned proteins [9, 10].

Thus, it is not possible to determine the right treatment without knowing the exact

EGFR mutation as the reason for this lung cancer.

The last example points out that there is a need for comparative analysis of SVs of

different tissues, samples or treatment stages.

The next sections present methods to determine SVs and put a finer point on the de-

tection of insertions with paired-end mapping.
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Figure 2.1: Epidermal growth factor receptor (EGFR) mutations. The arrows show the
somatic mutations within the tyrosine kinase domain, which belongs to the EGFR exon
region. The most prevalent SVs are deletions in exon 19 (45%) and the point mutation
Leu858Arg in exon 21 (40%). About 4% are insertions in exon 20. The remaining SVs

are other point mutations. (Graphic obtained from [10])

2.2 Detection of Structural Variants

There exist many different possibilities for SV identification, where the main idea is to

compare a given donor genome containing putative mutations with a reference genome.

On the one hand, there are several experimental approaches, like aCGH (array-based

Comparative Genomic Hybridization) [2, 11]. On the other hand, it is common to use

computational methods, which will be discussed more detailed now.

The plainest approach would be to align both genomes after assembling the whole donor

genome. In order to save time and cost caused by the genome assembly and its costly

finishing steps, a better option is to consider only those reads for an assembly of genome

regions, where structural variants are suspected [12]. Another way to find differences

is to completely spare the assembly and only align the reads of the donor to the ref-

erence genome, a so called mapping, and make conclusions by the behaviour of the

alignments [1, 13].

There are three common types of algorithms finding SVs: Some solutions, like Mr-

Fast [14] or CNV-seq [15], consider regions with an abnormal coverage. This means the

number of aligned reads in this region is significantly higher or lower than the average of

the genome. Algorithms that interpret the configuration of paired-end mappings to find

SVs (explained shortly below and in detail in Section 2.3), are used, for example, in ag-

gloDel [1], BreakDancer [16], VariationHunter [17] or Pindel [12]. A third method takes

split reads into account, where reads can not be aligned completely, e.g. in SRiC [18].

All methods have their advantages and disadvantages and it makes sense to combine

them and use the strong points of each. Sindi et al. [2], for instance, use both ap-

proaches of paired-end mapping and the coverage density for the detection tool GASV

to find SVs.
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Below follows a short introduction of the three techniques.

Coverage

The main idea is to find regions in the reference, where the read coverage significantly

differs from the expected coverage after mapping the reads. The assumption of the ex-

pected coverage can be made on the average distribution of the reads.

These read density-based algorithms can detect only dosage-altering SVs like insertions

or deletions and are not able to find copy-number neutral variants like inversions or

translocations. They work best for big copy number changes (CNVs), so if parts of the

genome are lost or duplicated. The bigger the CNV, the more sensitivity and specificity

increase [2, 3].

Paired-End Mapping

For paired-end mapping (PEM) or end sequence profiling (ESP), DNA fragments of the

donor genome are sequenced from both sides and aligned to the reference sequence. The

read length, the approximate distance between the reads and their relative orientation is

known. SVs are determined by comparing orientation and distance of the paired reads

after mapping them to the reference sequence. A SV is considered, if a read orientation

is opposite or the distance of the paired reads differs significantly. A more precise ex-

planation follows in the next section.

With this technique it is possible to find inversions, translocations, transpositions, in-

sertions and deletions.

Split Reads

An indication for a SV are reads which did not completely map to the reference genome.

If two parts of one read map on the reference with a certain distance between these

parts, there might be a possible deletion in the donor genome. In case a read spans a

small insertion on the donor genome, parts of the read without the insertion sequence

will map consecutively. Interchromosomal rearrangements could have occurred if reads

are found which map in parts on different chromosomes.

The approach of aggloIns only uses PEM. So this method will be described more precisely

for the detection of insertions below.

2.3 Detecting Insertions with PEM

Korbel et al. [19] introduced the method of paired-end mapping for detecting SVs. A

sample genome (donor) is multiplied and fragmented. These fragments are sequenced

from both sides of the double strand with a short-read sequencer like 454 or Illumina,

resulting in a massive amount of paired reads. Figure 2.2 illustrates the sequencing

process.
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Figure 2.2: Paired end sequencing. First the genome is fragmented, adaptors are ligated
and the fragments can be sequenced from both ends. (Graphic is used from [20].)

The read length and its relative direction on the double strand of the donor genome

are known. The fragment size (Figure 2.3), spanned by the paired reads, is distributed

around a certain length.

The paired ends are mapped to the reference sequence. A mapping is concordant, if the

initial chromosome and direction on the donor sequence are retained on the reference

and the distance between the read ends is still associated with the fragment size. If

the reads are mapped on different chromosomes, their relative orientation is incorrect

or the distance differs significantly from the initial fragment size, the mapping is called

discordant. This case indicates a given SV in the donor genome (or errors during the

mapping or assembling process).

The task of aggloIns is the detection of insertions. This means a sequence is inserted

into the donor genome with regard to the reference, thus is only found in the donor

sequence. The insertion position is also called insertion breakpoint. Those paired reads

which span the whole insertion within the donor will be mapped to the reference with
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Figure 2.3: The two arrows represent the paired-end reads, which have a fixed size and
direction within the donor genome. The fragment size is approximately known and

spans the space between the outer ends of both reads.

the correct direction but with discordance referring to the fragment size: the paired-end

mapping will span the insertion breakpoint with a distance shortened by the insertion

size (Figure 2.4). We call such a mapping abridged mapping.

Figure 2.4: Paired-end mappings spanning an insertion. The distance of the paired reads
in the reference mapping is shortened by the size of the insertion.

Because the original fragment size and hence the distance between the mapped reads

is not exactly known, it is not possible to determine the exact insertion size. However,

since the fragment size is assumed to follow the Gaussian distribution around a certain

mean µfrag (as seen in the distribution of fragment sizes in Figure 4.14 in Section 4.2) and

the read length r is known, the expected mapping distance can be settled as normally

distributed around mean µdist = µfrag − 2r with the standard deviation σ. A reference

mapping can be considered as abridged, if the actual mapping distance d < µdist − xσ,

where x > 0 can be chosen freely. The insertion size s can therefore be approximated

by

s = µdist − d.
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The size of detectable insertions is limited in both ways, shown in Figure 2.5.

(a) Maximal detectable insertion size.

(b) Minimal detectable insertion size.

Figure 2.5: The detectable insertion size via PEM is limited by the fragment size and
the accuracy of the sequencing process.

The fragment size is a border for the maximal detectable insertion size, because both

reads have to be mapped to the reference, which requires µfrag − s ≥ 2r (see Fig-

ure 2.5(a)). The maximal detectable insertion size is therefore

smax = µfrag − 2r = µdist.

The minimal detectable insertion size depends on the accuracy of the sequencing process,

i.e. the standard deviation. As a mapping with distance d ≥ µdist − xσ is considered as

concordant, the minimal detectable insertion size has to be

smin = xσ + 1,

shown in Figure 2.5(b).

This means, the PEM approach is only capable for the detection of medium sized in-

sertions and gets more limited to the detectable insertion sizes with higher standard

deviations.
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2.4 Used Tools and Formats

2.4.1 SAM/BAM format and SAMTools

SAM (Sequence Alignment/Map) is a format standard for storing large DNA sequence

alignments or mappings. It is not intended for the human reader, but for the simple

processing with various tools. It can store all the information about the alignments

from different programs and is easy to generate or converted from/to other alignment

formats. It is possible to avoid loading the whole alignment into memory by streaming

the information for most of the operations. To retrieve only reads that are mapped at

a certain locus, it allows to index the file with the genomic position.

The format is also available in a binary version, the BAM format, to save disc space.

It compresses the information in the Blocked GNU Zip Format (BGZF), which makes

it still possible to access the indexed queries despite the packed format [21]. SAMTools

provides several opportunities to view the data in a more comfortable format, filter and

sort the output, do realignments or merge data sets. In this context the utility view

is called while reading the BAM files in aggloIns to get the mapped and filtered read

information. For the simulation of the data in the evaluation step, the utilities view, sort

and index are called to convert the SAM files to BAM and keep the indexed loci [22].

2.4.2 Picard

Picard provides a JAVA API (SAM-JDK) to read, manipulate and write SAM and BAM

files in own programs. AggloIns uses the API to read and filter the BAM files.

Furthermore, Picard offers a package with JAVA based command-line utilities. The

contained jar files afford many opportunities to manipulate and convert SAM files. The

tool SAMToFastq.jar is used for the conversion from BAM to FASTQ format in the data

simulation workflow (Section 4.1.2). The SAM-JDK as well as the Picard tools can be

downloaded on http://picard.sourceforge.net/.



Chapter 3

Methods

This chapter illustrates the modelling and implementation of the clustering process in

aggloIns. The previously described abridged mappings are required as input and are

aggregated to clusters, representing the insertions. The method is based on the model

for the deletion clustering in aggloDel [1] with adjustments for the purpose of finding

insertions. The modelling section gives an overview of the definition of clusters, their

similarity scores, and the agglomerative clustering procedure. The implementation sec-

tion describes the practical realisation and ends with the analysis of the time complexity.

3.1 Modelling

The model of the clustering process for overlapping insertions is built on the approach

of Wittler [1] to find overlapping deletions with aggloDel.

A region within a genome may show up diverse insertions on different alleles or samples.

If the insertion breakpoints are located very close to each other with respect to the ref-

erence, it is possible that the paired mappings span more than one insertion breakpoint.

It gets difficult to compart the mappings and distinguish the insertions (Figure 3.1).

Insertion breakpoints are located in one region if they are so close, that their respective

mappings might overlap. This means for both of two mappings, that the right end of

the left read is located to the left of the inner end of the other mapping’s right read.

The aim of aggloIns is to approximate a solution by pooling similar mappings to one

cluster and assign them to one insertion.

The algorithm used in aggloIns for this purpose is called agglomerative clustering. It is

a bottom up approach which starts with each element of a set as a singleton cluster.

These are merged successively following a score hierarchy until only one cluster is left

or a certain score threshold is reached and no more clusters can be joined. The score

11
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Figure 3.1: Two different alleles contain different insertions in the same region. The
insertion breakpoints are so close that the mappings span both of them on the reference

sequence. The challenge is to assign the mapped reads to the correct insertion.

defined here indicates the similarity with regard to location and size of the putative

concerned insertion.

Below is explained how a cluster can be represented combining both criteria and making

the required similarity score definition for the agglomerative clustering process possible.

3.1.1 Clusters

In the beginning of the clustering process, each discordant mapping suspecting an inser-

tion is a singleton cluster. The attributes of a singleton cluster are determined by the

characteristics of the mapping.

The position of the represented insertion lies between the paired reads of the mapping.

A cluster has therefore a minimal and maximal position for the breakpoint, xmin and

xmax.

The insertion size s is approximated by the expected fragment size less the actual map-

ping size: s = µfrag − 2r − d.

As the insertion size is not exact, just approximated by the mean fragment size, we

assume the standard deviation of the fragment size σ as deviation for the insertion size

σins and by association the variation σ2ins. With this modelling, the insertion size follows

a discrete normal distribution around s and each possible insertion size has a certain

probability.

These attributes can be projected in a coordinate system, as seen in Figure 3.2: The

x-axis indicates the position within the reference genome. xmin and xmax are the bounds

for the possible insertion breakpoint site. The insertion size is specified on the y-axis.

The probability for each insertion size is presented as a bellcurve in the third dimension

(in Figure 3.2 indicated with the grey shaded area).

This geometric presentation allows to define another attribute for a cluster: the volume
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Figure 3.2: Mapping cluster presentation in a coordinate system.

V , defined by the interval for the possible breakpoint positions of length xmax−xmin + 1

and the area under the Gaussian bellcurve. The boundaries for the insertion size are

limited by zero (as an insertion must have a size of at least 1) and the maximal de-

tectable insertion size smax = µfrag− 2r, discussed in Section 2.3. The volume combines

both criteria of position and length of an insertion and can be used for the measuring

of the similarity between two clusters.

3.1.2 Score

The score for the clustering process has to assess the similarity of two clusters referring to

position and size of the predicted insertion. These criteria are represented by the volume

of the geometric model of an insertion, as seen in the previous section. The more two

cluster volumes overlap, the more they have in common. Therefore, the similarity score

S of two clusters A and B is given by the intersection of the two cluster volumes V ,

normalised by the bigger volume:

S(A,B) =
V (A) ∩ V (B)

max(V (A), V (B))
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This score is between zero and one and increases the more they agree. The intersection

volume is given by the overlapping area of both normal distributions and the intersect-

ing breakpoint position range, given by the distance between the inner most insertion

position extrema, min(xmaxA , xmaxB ) − max(xminA , xminB ), as seen in Figure 3.3. The

Figure 3.3: The intersection of two cluster volumes. The diagram shows the intersection
of two clusters with an overlapping insertion position range. Next to the coordinate
system the intersection is shown from a different angle, the overlapping normal distri-

bution in the third dimension.

intersection volume is more affected by differences in the size than by differences in the

position of an insertion. This is a desired feature of the score, because one insertion

breakpoint can be covered by several mappings which are located at different positions.

Moreover, the exact position of the insertion breakpoint can be approached better if

there are several mappings spanning it. It is unlikely that they map all at the same po-

sition. They are rather spread around the breakpoint with a small shift in the mapping

position. So the range of the potential insertion position can be limited with each shift

in the mapping position.

The volume is more sensitive to a shift of the normal distribution peaks, meaning the

insertion size. This harder punishment for size differences is wanted, because it means

that the mappings are inconsistent and should be clustered into different clusters for

different insertions at the same position.

The score is exactly one if and only if the attributes of both clusters are the same. The

score is zero if there is no intersection of the possible insertion positions. If the clusters

agree with the position, the score is theoretically never zero as the normal distribution

only converges to zero and never reaches it. In practice a positive probability is only

considered for possible insertion sizes, between zero and smax, though.

Nevertheless, if two clusters have insertions with a size within the same allowed range,
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there is always an intersection point, no matter how far apart the mean insertion sizes

are. For this case a minimum score threshold is defined. If the score of two clusters

does not reach this threshold, the clusters will not be merged and the clustering process

stops. Wittler [1] introduces a method to find an appropriate threshold for the deletion

clustering by separating significant similarity values from noise. The median of all min-

imal scores of each singleton cluster is determined in a preprocessing step, when there

is no threshold parameter given by the user.

In Section 4.1.3, the results with different score thresholds, including the median, for

aggloIns are compared. The experiments showed that no limitations for the threshold

during the insertion clustering yielded better results (Figure 4.5).

3.1.3 Clustering

During the agglomerative clustering process the two clusters A and B with the highest

similarity score are merged to one new cluster C. All attributes of the new emerged

cluster will be determined by combining the attributes of the fused clusters:

• nC = nA + nB

• xminC = max(xminA , xminB )

• xmaxC = min(xmaxA , xmaxB )

• sC =
nAsA + nBsB
nA + nB

• σ2insC =
nAσ

2
insA

+ nBσ
2
insB

nA + nB
+
nAnB(sA − sB)2

(nA + nB)2

These computations are carried over from the merging process of clusters with potential

deletions in aggloDel [1]. By choosing xmin and xmax as the margin for the location of the

insertion, the congruent area for an insertion of the original clusters is still compatible

for both of the clusters. It will be determined more precisely with an increasing number

of similar mappings restricting the boundaries.

The merged mean of the insertion size is weighted by the number of mappings in the

respective cluster. This means an insertion size in a certain region is more emphasised

the more mappings in a cluster are supporting it.

Like in aggloDel, we use an equation from population based statistics for aggregating

non-overlapping sub-populations to create the joint variance/standard deviation for the

mean insertion size in aggloIns. In the case that the insertion sizes of the two merged

clusters are the same and thus sA−sB = 0, the new variance is simply the mean variance.

However, the standard deviation increases with the disagreement of the clusters in the
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mean insertion size. This effect is reduced by the number of mappings supporting both

clusters. The more mappings each cluster contains, the more consolidated and accurate

is the joint insertion size.

The next step is to recompute all similarity scores concerning the merged clusters with

the attributes of the new cluster. The merging step is repeated with the next cluster

pair with the actual highest score. This happens successively in a bottom-up approach

until only one cluster is left or, if given, the score threshold cannot be outreached.

3.2 Implementation

The method for detecting overlapping insertions in aggloIns is an extension of the existing

tool aggloDel [1], which is implemented in JAVA. Although aggloIns is based on aggloDel,

some of the existing methods and structures have been modified and will be explained

below.

To start the program, at least two parameters are needed:

1. The tab separated configuration file, which contains a list of all BAM files to

import, followed by the mean fragment length and the standard deviation of the

paired mappings contained in each file. Optionally, a colour can be declared for

each BAM file to distinguish them in the visualisation.

2. The output prefix, with the path and the prefix name for the output files.

java -jar agglo.jar [OPTIONS] <BAMLIST> <OUTPREFIX>

In addition, several optional parameters can be set. The relevant arguments for finding

overlapping insertions are
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indels a flag to define whether insertions (1), deletions (2) or both (0)

have to be found, default: 0

insSimThreshold minimum similarity score used in clustering of insertions, de-

fault: 0

regions either a file containing regions or a string with a given region to

consider for the import of the data

stdThreshold read only mappings longer than mean+stdThreshold*std, de-

fault: read all

outputR R file output for each region to produce graphics

clusterMin only output clusters of at least this size, default: 2

quali only consider mappings with a quality value higher than quali,

default: 20

numMM number of allowed mismatches in the mappings, default: read

all

unique a flag, if mappings with alternative hits, suboptimal hits and

more than one best hit are filtered out

The program can be divided into several steps:

After checking the parameters, the procedure starts with reading the config file contain-

ing all BAM files and if defined, the regions. After that the mappings are imported

by reading the BAM files. If no regions are given, all mappings are considered for the

import and regions are assembled where enough mappings were found. The next step is

the clustering process itself, followed by the output of the results.

The steps will be described in particular in the following subsections.

3.2.1 Mapping Import

The read-in process has been changed from parsing the SAM format and interpreting the

containing flags and tags to the usage of the Picard SAM JDK package [23], introduced

in Section 2.4.2. This is an API for the import of SAM or BAM files by providing each

read as a so called SAMRecord object, which can be filtered with several filter settings.

For the purpose of finding insertions (or deletions), only those mappings are read, which

are aligned to the reference, have no duplicate reads (several copies of the same read),

are the primary alignment and match the Vendor read quality filter.

Furthermore, the mapping quality value should be higher than 30 and the number

of open gaps has to be limited to 0 or 1, as tests have shown that these restrictions

support the best results for insertions (Figure 4.10 in Section 4.1.3). Allowing non-

unique mappings also increases the evaluation result, as insertions are often in genome

regions with repetitive sequences and filtering out all multiple mappings makes it hard to
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find insertions. Also the minimum cluster size, the number of mappings in a cluster, takes

an important role for the result and choice of filter criteria. The detailed experiment is

presented in Section 4.1.3.

If both reads of a paired mapping pass the filter criteria, this gets classified as concordant

or discordant, according to the fragment length of the mapping (Section 2.3). A mapping

classified as discordant is assigned as insertion or deletion.

3.2.2 Determining Regions

Regions containing clusters can optionally be defined beforehand and only those map-

pings are considered for the clustering which are within these regions. If no regions are

given, they are determined by overlapping mappings. This means, a mapping is added

to a region if it is at the same chromosome and overlaps with another mapping of this

region. If a mapping cannot be assigned to an existing region, or in other words, a region

contains only one mapping, it is filtered out. The process of assembling the regions is

used for both deletions and insertions.

3.2.3 Similarity Score Threshold

Before the clustering process starts, the similarity threshold has to be determined, if it is

not given as a parameter. For clustering deletions, the median of all minimal scores from

all mappings appears to be the best choice for a threshold in practice [1]. Compared

to a range of several set thresholds, the best results are reached with the median score.

Higher thresholds show an increased false positive rate and smaller values decrease in

the true positive rate.

In contrast, several tests with aggloIns achieved an optimal result without any threshold,

as seen in Figure 4.5. Especially for the detection of overlapping insertions, both false

positive rate and true positive rate improve with a decreasing threshold and have their

optimum with a threshold of zero.

Thus, if no similarity threshold for clustering insertions is provided, it is set to zero and

the clustering process runs until no clusters are overlapping anymore.

3.2.4 Clustering Process

The clustering process for insertions is the same as for deletions and is performed for

each region separately. Each mapping belonging to this respective region is considered

as one singleton cluster. In a preprocessing step, all scores are computed for each cluster

to all the others. They are stored in priority queues for each cluster.
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Like explained in Section 3.1.3, the clusters with the maximal similarity score are merged

to a new cluster. The iteration stops if only one cluster is left or the remaining similarity

score cannot exceed the score threshold.

3.2.5 Output

The output format for the found insertion clusters resembles that for detected deletions.

Each cluster is listed in a tab separated file with the cluster attributes, for instance

chromosome number, minimal and maximal insertion breakpoint position and cluster

ID. A region ID is given to see if different clusters are in one region. The insertion

position, defined as center between minimal and maximal insertion site, is only given

for illustration purposes. It does not represent the found insertion site.

Furthermore the approximate insertion size and its standard deviation are reported as

well as the last merging score and the number of mappings included in the cluster.

Additionally, the number of mappings per BAM file is given, because this information

can be used to determine to which sample a potential insertion belongs. For example,

if many mappings count among a sample of tumor tissue and only a few mappings from

the healthy sample are among them, the insertion may be involved in tumor emergence.

Another output file lists all mappings per cluster to track the cluster formation.

If the parameter is set, output files with R code are created, which give the possibility

to visualise the clusters of a region in a PDF file: The theoretical geometric presentation

of an insertion, demonstrated in Figure 3.2, is shaped like a rectangle, with the minimal

and maximal positions of the insertion breakpoint on the x-axis and the insertion size

on the y-axis. In contrast, deletions are modelled as triangles above the diagonal of

the coordinate system, because x- and y-axis are showing the left and right deletion

breakpoint positions within the genome and the deletion size is the distance to the

diagonal. To combine deletions and insertions in one graphic, it is more convenient to

add another y-axis, indicating the deletion size, below the x-axis and plot the deletions

analogous to the insertions. Figure 3.4 illustrates the visualisation of both geometric

modellings. The mappings of each BAM file are coloured as defined in the config file.

The normal distribution in the third dimension is implied by grey shades. Clusters that

contain at least as many mappings as defined by the parameter (default two) are coloured

yellow, with a pink label indicating the number of involved mappings per sample. The

smaller clusters are indicated only by dotted lines.
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Figure 3.4: Visualisation of insertions and deletions in one graphic. The green cluster
indicates an insertion at the same position where the red sample harbours a probable

deletion. (Taken from the results in Section 4.2)

3.2.6 Time Complexity

In the first step of the clustering process, all N(N − 1) similarity scores are computed

and are added to the priority queue. It takes O(logN) time to add an element to a

priority queue. This leads to a run time for the first step of O(N2(P + logN)), with P

for the score computation, which is described below. After that, N clusters are merged

iteratively. For this, the currently maximal score has to be determined in O(N) time by

looking for the maximal score in the priority queue of each cluster. The two respective

clusters are merged to one cluster, which includes the recomputation and updating of

the concerned scores in O(N(P + logN)) time.

The time to calculate the score depends on the value of the fragment size. The intersec-

tion of two volumes is given by the overlapping normal distributions indicating the prob-

ability of an insertion size and the range of putative breakpoint positions, xmax−xmin+1.

The maximal possible distance between mapped paired reads (and thus the number of

possible breakpoint positions) is µfrag − 2r. However, for this case the insertion size is

approximately zero.

The width of the normal distribution is yielded by zero and the maximal insertion size
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smax, which is also depending on µfrag. A cluster indicating the maximal insertion size

implicates a distance of zero between the most inner reads.

Therefore, the score computation P is constant and takes O(µfrag) time. The overall

run time for the clustering process is consequently O(N2 logN).

In practice, the most temporal effort arises during the reading of the BAM files and

increases linearly with the number of mappings.





Chapter 4

Results

This chapter presents the evaluation of aggloIns. The first section describes the evalu-

ation on simulated data. It starts with the adjustment for optimal mapping filters and

parameter settings. After that follows a benchmarking in comparison to another tool.

The second section shows the results of aggloIns used with a real data set.

4.1 Simulated Data

This section starts with the explanation for the establishment of the simulated data.

It describes which genome serves as reference, which insertions are sampled and which

test scenarios are simulated. Then, several filter and option adjustments for different

scenarios are performed, followed by the benchmarking, where aggloIns is compared to

the tool BreakDancer [16].

4.1.1 Sample Insertions

To assess the parameters, evaluate the results and to benchmark the tool, genomes with

insertions were simulated. Levy et al. [24] identified structural variants by comparing

J. Craig Venter’s genome (HuRef) with hg18. This list of SVs, including insertions

along with their sequences, served as source for the insertion simulation (insertion size

distribution is seen in Figure 4.1). Thus, hg18 was used as reference. It is a version

of the human reference assembly from 2006 by the National Center for Biotechnology

Information (NCBI). To have enough data in order to get stable results and at the same

time ensure practicability, we took four chromosomes of the reference genome.

Two copies of the reference chromosomes were created and insertions from the venter list

of known insertions were integrated, 500 overlapping and 500 non-overlapping (125 per

23
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Figure 4.1: Histogram of the insertion size distribution of the venter genome of overall
403623 insertions.

chromosome). The first chromosome copy contains 250 insertions. They were randomly

chosen and the sequence was inserted at the actual position. The second copy contains

125 insertions that are overlapping with 125 from the first copy. For this, randomly

chosen insertions were inserted close to the position of the corresponding overlapping

insertion: in a random distance to the other position between 0 and the expected read

distance, so that it is possible that the mapped reads span both of the insertion break-

points.

The characteristics for the read pair simulation is based on the characteristics of the

real data in Section 4.2, to obtain a simulated data set as realistic as possible. Table 4.1

shows that the read pairs of the real data set have a fragment length around 300 bp and

a standard deviation around 35. The read length is 51 bp. For the simulation, the read

length and the fragment length are adopted. However, about 92% of all insertions in the

venter list are shorter than 100 bp. Fragment size and standard deviation are delimiting

the detectable insertion size, as explained in Section 2.3. So the standard deviation is
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scaled down to 15 to take also smaller insertions into account. We sampled only inser-

tions from the list with a size between 35 and 190. (Although the theoretical minimal

detectable insertions size would be 45, we examined also smaller insertions, because of

the deviation). The distribution of the sampled insertion sizes is seen in Figure 4.2.
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Figure 4.2: Histogram of the sampled insertion size distribution.

4.1.2 Simulate Mappings

An insertion can either be homozygous, which means the insertion occurs in both alleles

or it is heterozygous. In this case, the insertions is only existing in one of the alleles. For

the evaluation, two different scenarios are established (Figure 4.3): In the first one, both

genomes are homozygous. In the second scenario, only the first copy is homozygous and

the second copy is heterozygous. Both scenarios are tested with a coverage of 20× and

60×, which means that each position of the genome is covered by 20, respectively 60,

different reads.

The tool SimSeq [25] is used to simulate the reads of both modified genomes. It is an

Illumina paired-end (and mate-pair) short read simulator, which provides typical se-

quencing errors occurring during the sequencing process. For this, an error profile is

needed. In our case, the example error profile from a 100 bp Illumina GAIIx data set,

provided by SimSeq, is applied, because it is practicable for reads ≤ 100 bp. The other
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(a) Scenario 1: homozygous

(b) Scenario 2: heterozygous

Figure 4.3: The two scenarios for the evaluation of the simulated diploid data set. The
first copy contains 500 insertions belonging to the overlapping pairs and 500 non-
overlapping insertions. The corresponding 500 overlapping insertions are in the second
copy. (a) Both genomes are both homozygous. (b) The first copy is homozygous, but

only one allele of the second copy carries the insertions, i.e. it is heterozygous.

parameter values are chosen, as described earlier: a read length of 51 bp, an insert size

of 300 and a standard deviation of 15.

The output is in SAM format and has to be converted to a sorted and indexed BAM file.

This is done via SAMTools [22] with the commands view, sort and index (see detailed

information about SAM/BAM and SAMTools in Section 2.4.1).

To be able to map the reads to the reference, the BAM files are converted to FASTQ

files, containing the sequences of the reads along with their quality scores. The reads

are stored in two files, each for one mate of the paired reads. The converter used here

is contained in the Picard-tools package [23] (Section 2.4.2).

The reads are mapped to the reference sequence with BWA (Burrows-Wheeler Align-

ment) [26], version 0.7.5. BWA is a tool to align short reads (e.g. by Illumina/Solexa se-

quencing with 32−100 bp) against a long reference, like in our case several chromosomes

of the human genome. It is based on the backwards search and BWT (Burrows-Wheeler

Transform), and allows mismatches and gaps. Besides single read mapping, paired-end

mapping is also supported, which is an essential option for the purpose in this context.

The output is in SAM/BAM format and can be used as input for aggloIns.

4.1.3 Evaluation and Comparison of different Score Thresholds and

Mapping Filter Criteria

To evaluate the results, all correct insertion predictions have to be counted. The output

for the found insertions provides the interval for the potential insertion between xmin and
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xmax, as well as the approximate insertion size and its associated standard deviation. A

found insertion is only counted as correct hit if exactly one true insertion is found within

the interval. Additionally, the difference of the true and found insertion size must not

be bigger than three times the standard deviation. The boundaries of the insertion site

window are extended by 4 positions. The practice showed that several insertions were

not counted as correctly found, even though the true position was only a few positions

next to the window. The reason for this is a fairly probability that the insertion sequence

has a similar starting/ending sequence as the sequence at the breakpoint position (Fig-

ure 4.4). Examining the insertions showed, that the inserted sequence is often similar

to the genome sequence around the breakpoint.

Figure 4.4: If the insertions sequence (red sequence) is similar to the sequence around
the insertion breakpoint (bold sequence in donor and reference sequence), it might
happen that a mapped read (black arrow) overlaps the breakpoint position within the

reference (red line).

If the predicted insertion is not accepted as correctly found, it is counted as false pos-

itive. Each undetected true insertion is also counted. The evaluation is presented as a

ROC plot (Receiver Operating Characteristic), visualising the false positive rate (FPR)

against the true positive rate (TPR), also called sensitivity. The rates for the single

insertions (TPR1, FPR1) and overlapping insertions (TPR2, FPR2) are given by:

TPR1 = #correctly found single ins.
#simulated single ins. FPR1 = #falsely found single ins.

#sim. overl. ins.+#falsely found ins.

TPR2 = #correctly found overl. ins.
#simulated overl. ins. FPR2 = #falsely found overl. ins.

#sim. single ins.+#falsely found ins.

Before benchmarking aggloIns in comparison to another tool, the optimal filter and pa-

rameter settings have to be adjusted.

First of all we checked if the median of all minimal singleton cluster scores is the ideal

choice for a score threshold, like for the deletion clustering. A range of score thresholds

between 0 and 0.1, and the median are compared and the resulting ROC curve is seen

in Figure 4.5. We do not elaborate on the TPR and FPR values in particular at this

point, we are only interested in the behaviour of the ROC curve.

The plot shows that the true positive rate for overlapping insertions (solid circles) is

increasing with smaller score thresholds. Their false positive rate converges to zero.

The optimum is already reached with a threshold of 0.01 (indicated by a blue star),

but stagnates for smaller threshold values until 0 (red cross). The true positive rate

for single insertions (rings) increases also with smaller thresholds, but so does the false

positive rate. However, the slope of the ROC curve illustrates that the true positive
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Figure 4.5: ROC plot of different score thresholds.

rate is increasing more than the false positive rate. Again, a thresholds from 0 to 0.01

provides the best results. The median, in contrast, reaches a very high value, in this

case 0.29315 (green star), and is therefore not applicable as score threshold.

Taking a closer look at each TPR and FPR per score in Figure 4.6, it is seen that there

is a small drop of TPR2 from 0.01 to 0. The reason are four overlapping insertions that

are merged to single clusters with smaller thresholds than 0.01. However, the result is

stagnating for the rest and no other impairments are found. So we count this mistake

as outlier and still assume zero as a good choice for a default threshold.

Conclusion: In contrast to the optimal threshold for deletion clustering, the median

cannot be considered as optimal score threshold for the clustering of insertions. The

cause for this may be the similarity of insertions indicating discordant mappings in the

same region. The scores to all mappings and the resulting median are too high to take

this approach for an optimal solution. Moreover, the results converge to the optimal

results with smaller thresholds. So, if no threshold is given by the user, the threshold is

set to zero.

The next step is to find the best mapping filter options and parameter settings to de-

tect actual insertions. We tested different settings with the scenario of the homozygous

genome with 60× coverage and minimum cluster size of 3 (at least 3 mappings within
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Figure 4.6: Plot of TPR and FPR per score. Solid icons show the rates for overlapping
insertions. The contour icons present the rates for single insertions. The true positive

rates are illustrated by rectangles and the false positive rates by circles.

the cluster).

A first evaluation of aggloIns with all original filter settings for the BAM reading process,

as used for aggloDel, showed an unsatisfying result. Only around 40% of all overlapping

insertions were found correctly and 63% of all single insertions. Nearly 790 insertions

were mistakenly predicted.

AggloDel filters mappings with a mapping quality < 20 and mappings which have alter-

native and suboptimal hits. Mismatches are allowed, open gaps are not.

A closer look at the mappings with the help of IGV (integrative genomics viewer) [27, 28]

gave a hint, why so many falsely predicted insertions appeared and many of the true

insertions were not found at all. Many mappings, that were mistakenly considered as

discordant, showed a fairly small quality between 20 and 30 or had mismatches within

the read mapping. Often, those read mappings overlapped the insertion breakpoint.

They were still counted as mapped read and only contained one insertion at the break-

point position, as seen in Figure 4.7.

A restriction of the filter for mappings with a quality < 30 and containing mismatches

gained an improved result. Figure 4.8 illustrates this, where the original settings are

presented by the red plot and the modification with the blue plot. Only a third of the

falsely predicted insertions are left and over 50 overlapping and non-overlapping inser-

tions were detected correctly (see tables in the appendix).

Still, some insertions could not be found, because the filter settings were on the other
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Figure 4.7: Mapped reads, overlapping an insertion breakpoint. The presentation with
IGV shows that at the position of the insertion breakpoint (dotted line) few reads are

mapped. They contain a single insertion at the breakpoint position (purple I).

side too strict. Many mappings had alternative hits. In some regions with insertions,

all mappings were filtered out, so there was no chance to find them. Allowing those

non-unique mappings let few more falsely predicted insertions appear, admittedly. Nev-

ertheless, it increased the number of correctly found hits again by 50 single insertions

and 50 overlapping insertions. The best solution for the given scenario is therefore con-

sidering non-unique mappings without any mismatches.

We also ran aggloIns with the described filter settings with the scenario of the homozy-

gous genome and 20× coverage. Here these restrictions seemed to be too strict for the

scenario. Figure 4.9 shows that restricting quality value and mismatches (blue) worsens

both true positive rates, but at least cuts back the high false positive rate for single

insertions in the original setting (red). Taking non-unique mappings into account raises

TPR1 and TPR2 slightly (purple) to about the same level as the original setting. Several

insertions could not be detected, as some read pairs were sorted out because of single

mismatches. Single nucleotide errors can easily happen during the sequencing process.

So we allowed one mismatch. The results improved remarkably, for both single insertions

and overlapping insertions, illustrated by the green plot. We also tried to improve the

result by allowing 2 or 3 mismatches. However, these approaches deteriorated the results

again, as too many mappings are considered mistakenly. They prevent correct insertions

to be found, because they might shift the window for the possible insertions breakpoint

and too many insertions are falsely predicted. Thus, the best choice for filter setting in

this scenario is to consider non-unique mappings with at most one mismatch. Allowing

one mismatch for a coverage of 60×, however, does not improve the result (dark green

plot in Figure 4.8).
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Figure 4.8: ROC plot with different options for the homozygous genome with 60×
coverage and cluster size 3. Solid circles indicate overlapping insertions (D=double)

and rings represent the rates for single insertions (S=single).

As the optimal solutions for 20× and 60× coverage are different, we had a look at the

cluster size, i.e. the number of supporting mappings. Up to now, we counted each

cluster with a minimum size of 3 for both coverages. Instead, we adjusted the ratio of

coverage to cluster size. For coverage 60×, we used a minimum cluster size of 9 into

account. Figure 4.10 shows that the results are now nearly the same as for 20× coverage

and a minimum cluster size of 3: The true positive rates are lower in comparison to

cluster sizes of 3, especially TPR1. The result hierarchy resembles now the one with

20× coverage. However, the allowing non-unique mappings without any mismatches

(purple) gains better results than the original setting (red). The best result is achieved

with non-unique mappings and one allowed mismatch (dark green).

Conclusion: The experiments showed that the most correct single and overlapping

insertions are found, if high quality non-unique mappings with at most one mismatch

are clustered. This applies to low coverage and small cluster sizes as well as for higher

coverage with bigger cluster size. Small clusters found with a high coverage can still be

accurate, though, but with stricter filter settings. Only perfect mappings without any

mismatches may be considered, otherwise too many false predictions occur.
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Figure 4.9: ROC plot with different options for the homozygous genome with 20×
coverage and cluster size 3.

4.1.4 Comparison with BreakDancer

To benchmark aggloIns, we want to compare the results of a different tool considering

the same data set. The detection of deletions with aggloDel was compared to GASV [2]

and CLEVER [29], though CLEVER was regarded only marginally in the end. Al-

though it reports overlapping deletions, they are meant as alternative predictions, rather

than overlapping predictions. GASV, however, only focuses on deletions, inversions and

translocations and does not support the detection of insertions.

Alternatively, we wanted to do the benchmarking with SVM2 [30], also a paired-end

mapping approach to detect SVs. Unfortunately, the server hosting the program is not

available.

Lastly, we ran BreakDancer [16]. The algorithm also takes anomalous paired-end map-

pings into account, based on the read pair distance and the direction of the aligned

reads. It considers regions within the genome with a number of anomalous mappings

deviating from the one expected on average. Putative SVs are determined by finding re-

gions interconnected by the same mappings and calculating a confidence score for these

SVs based on a Poisson model, considering the number of supporting reads, the size of

the regions and the coverage of the genome.

We compared the results of detected overlapping and single insertions of all scenarios



Chapter 4. Results 33

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

FPR

T
P

R ●

●

●

●

●

●

●

●

●

●

●

●

●

platzhalter
original
qual>30, NM0
n.uniq., NM0
n.uniq., NM1

●

●

●

●

●

●

●

●

●

●

D S

Figure 4.10: ROC plot with different options for the homozygous genome with 60×
coverage and cluster size 9.

with homozygous and heterozygous genomes and 20× and 60× coverage, respectively.

Like explained in the previous section, we filtered the mappings of the data set with 60×
coverage with a mapping quality < 30 and any mismatches, but allowed non-unique map-

pings. For the data set with 20× coverage we allowed one mismatch.

Figure 4.11(a) shows the results for the homozygous genome with 60× coverage. The

true positive rate for overlapping insertions is quite similar, though aggloIns finds a few

more overlapping pairs. BreakDancer found 61% and aggloIns was able to detect 64%.

However, the results for found single insertions differ drastically. TPR1 and yet FPR1

are much higher for aggloIns. 84.4% of all single insertions could be recognised, whereas

BreakDancer could only find 65.8%. Admittedly, aggloIns predicted 238 insertions mis-

takenly and BreakDancer only 94.

For the heterozygous genome, the tendencies stay the same, see Figure 4.11(b). Only

the number of correctly predicted overlapping insertions decreases for both methods.

The ROC plot of the results for both scenarios with 20× coverage in Figure 4.12 illus-

trates that the divergence of both TPR1 and FPR1 values increases even more with

the lower coverage. Exemplarily, for the homozygous scenario, aggloIns is able to de-

tect 71.4% of the single insertions correctly, BreakDancer only 42.8%. Nevertheless,

aggloIns reports 78 falsely spotted insertions and BreakDancer only 21. In the homozy-

gous scenario, the true positive rates for overlapping insertions from both methods are
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(a) 60× coverage, homozygous
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(b) 60× coverage, heterozygous

Figure 4.11: ROC plot for aggloIns and BreakDancer with 60× coverage

still close. 49.5% of all overlapping insertions could be found by aggloIns and 51.8% by

BreakDancer. Figure 4.12(b) shows that aggloIns has its difficulty with the heterozy-

gous scenario and detects only 37.2% of the overlapping insertions. Also BreakDancer

achieves a poor result of 42.8%, though.
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(a) 20× coverage, homozygous
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(b) 20× coverage, heterozygous

Figure 4.12: ROC plot for aggloIns and BreakDancer with 20× coverage
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Conclusion: With a higher coverage, aggloIns has the ability to detect few more over-

lapping insertions than BreakDancer and even 18.6 more percentage points of all single

insertions. However, the specificity for single insertions with aggloIns is lower, which

means more erroneous insertion predictions occur. As expected, the ability to find over-

lapping insertions decreases with a lower coverage for both methods. Here, BreakDancer

detects a few more than aggloIns, yet aggloIns is way out in front of predicting single

insertions. The detection with aggloIns can achieve 26.6 more percentage points.

We surveyed how many overlapping insertions were correctly found with both tools and

how many were detected by only one of the methods. The Venn diagrams in Figure 4.13,

for the extreme scenarios of homozygous with 60× coverage and heterozygous with 20×
coverage, show that many overlapping insertions were only found by one of the methods.

Especially for the case with 20× coverage, less than half of all overlapping insertions

were predicted by both aggloIns and BreakDancer. With 60× coverage, about 59% of

all insertion pairs were found by both of them. Investigating the characteristics of those

insertions found by only one method showed, that this circumstance comes along with

the concerning insertion sizes. BreakDancer had problems with overlapping insertions

that differ extremely in their insertion size, e.g. if one of the two has a size around 40

and the other one over 100. They are merged and reported as one insertion prediction.

On the contrary, overlapping insertions that were not reported by aggloIns mainly had

a similar position and size, with a difference up to 30, and were therefore clustered to-

gether.

89 74231

aggloIns BreakDancer

89 74231

aggloIns BreakDancer

(a) 60× coverage, homozygous

99 71115

BreakDancer aggloIns

99 71115

BreakDancer aggloIns

(b) 20× coverage, heterozygous

Figure 4.13: Venn diagram of correctly found overlapping insertions with (a) 60× cov-
erage and homozygous scenario (b) 20× coverage and heterozygous scenario.



Chapter 4. Results 36

4.2 Real Data

The data set used in this evaluation has been provided by the Department of Paediatric

Oncology, Haematology and Immunology at the Düsseldorf University Hospital, Ger-

many. Three samples of an acute lymphoblastic leukaemia patient have been sequenced:

before the treatment, after the treatment and after a relapse. The sequencing was done

on an Illumina HiSeq 2000 with a read length 51, a segment length around 300 and

coverage of respectively 6×, 8× and 8×. These reads were mapped to the reference se-

quence hg19 at the Institute of Medical Informatics at University of Münster, Germany.

They used BWA [26] as mapping tool with not more than three allowed mismatches and

removed duplicates with Picard tools [23].

Table 4.1 shows the mean fragment length and its standard deviation for chromosome 1

of all three stages as example. The assumption that the fragment length is normal dis-

tributed is supported by Figure 4.14, which shows the fragment length distribution of

chromosome 1 in the relapse sample mappings.

Table 4.1: Mean fragment length and standard deviation of chromosome 1

data set mean std

chr1 initial 261.7477 40.90812
chr1 remission 297.2338 32.82395
chr1 relapse 306.2386 34.71178

Running aggloIns on a Sun machine with AMD 64 bit processors and 256 GB Memory,

only detecting insertions, took in total 3:59:02 hours. This time was dominated with

3:57:47 hours by reading and filtering 66 GB data containing about 1.6 billion reads.

Thus, only 1:15 minutes were needed to cluster the 2, 282, 493 filtered mappings and

report the results.

As the total coverage of the initial, remission and relapse sample sum up to 22×, the data

was filtered with the optimal filter settings for low coverage (see Section 4.1.3): Non-

unique mappings are allowed, clusters with more than one mismatch and a mapping

quality < 30 are filtered out. All mappings with a fragment length deviating more than

three times the standard deviation from the expected fragment length are considered.

These mappings assembled to overall 102, 859 regions, as described in Section 3.2.2.

However, 3, 624 regions contained 4, 404 clusters, which are supported by at least three

mappings. Table 4.2 gives an overview of the amount of regions with the number of

comprising insertions. The majority contains single insertions, only 374 regions could

be found with overlapping insertions (example in Figure 4.15). Regions with a high

number of overlapping insertions are primarily found in telomeric and centromeric areas
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Figure 4.14: Mapped fragment size distribution of chromosome 1 (relapse)

Table 4.2: Number and size of detected regions harbouring insertions.

region size 1 2 3 4 5 6 7 8 9 ≥10 total

# regions
(insertions) 3250 246 72 29 16 3 2 1 0 5 3624

# regions
(indels) 2968 449 99 36 24 4 6 3 3 14 3606

of the chromosomes. Mappings in these regions are not very reliable and should be

ignored.

Running the program with detecting both insertions and deletions revealed 3, 606 re-

gions containing insertions supported by at least three mappings. An example for an

overlapping Indel is found in Section 3.2 in Figure 3.4. However, overall over 86, 000

regions, harbouring clusters of at least size 3, were found. The reason is that deletions

in this size range appear much more often.

Figure 4.16 shows the distribution of the found insertion sizes. Most insertions have a

size between 130 bp and 150 bp. The low number of found insertions in total could be

explained by the restrictions of detectable insertions with this method, explained in Sec-

tion 2.3. With a mean fragment size of 300 and a standard deviation of 35, considering

those mappings which differ at least three times the standard deviation, the minimal
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Figure 4.15: Detected overlapping insertion in chromosome 11. One insertion with an
approximate length of 138 is found in the relapse sample close to an insertion of length

174 in the remission sample.

detectable size is 106. With a read length of 51, the maximal detectable insertion size

is 198 (as a reminder: smax = µfrag − 2r). Looking at the list of insertions in HuRef

found by Levy et al. [24], only 1035 insertions in this size range are found within the

whole genome. Over 99% of all insertions are smaller than 100 and about 92% have a

size below 10 (distribution see in Figure 4.1 in Section 4.1.1). A data set with a more

precise fragment size would lead to more detectable insertions and results containing

more possible overlapping insertions.
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Conclusion

Structural variants are not only involved in the diversity of genomes, but also in the

development of genetic diseases, especially cancer. Detecting such disease-causing struc-

tural variants undergoes an increased attention in the genomic research. Furthermore,

the comparative analysis of found structural variants in different samples or tissues is

an important issue in order to distinguish and assign, for example, individual mutations

and tumor causing structural variants, occurring in the same region.

This work presents an approach to detect overlapping insertions by clustering paired-

end mappings with a discordant configuration. The score to assess the similarity of

mappings, respectively clusters, is based on a geometrical representation of a putative

insertion, derived from the behaviour of the involved mappings. With the agglomera-

tive clustering process, the most similar clusters are merged step by step and possibly

overlapping clusters are revealed.

The algorithm of the agglomerative clustering approach is an intuitive, simple and fast

solution. Defining the similarity score by the normalised cluster volume showed plausi-

ble results and a threshold of zero performed best in the evaluation. Investigating more

clustering algorithms, e.g. the top down approach of divisive clustering, or other score

definitions might exhibit even better and more accurate results.

Applying the method to a real data set confirmed that the number and accuracy of

predicted (overlapping) insertions is depending on the fragment size and its deviation.

These criteria are limiting the detectable insertions size. Only few actually overlapping

insertions could be found. Running aggloIns on a more accurate data set would possibly

yield more predictions of overlapping insertions. There is also potential in combining

this approach with other methods, like split read analysis or coverage evaluation, to

improve the accuracy of predicted insertions and to be able to detect insertions beyond

the given size restrictions.

41
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Yet, it has been shown that our approach provides good results according to the evalua-

tion with simulated data, particularly for high coverage mapping data. It is planned to

provide aggloIns together with aggloDel in one tool together with the source code on the

Bielefeld University Bioinformatics Server (http://bibiserv.cebitec.uni-bielefeld.de).



Appendix A

Evaluation Results

The following tables show the results for all evaluations with the simulated data from

Section 4.1. It is counted how many correct and false predictions were made. The header

for each column is interpreted exemplarily as follows:

T0F1 → 0 true insertions in this region, but found 1 insertion

T1FX → 1 true insertion in this region, but found more than 2 insertions

T2F2 → 2 true insertions in this region and found 2 insertion (correct hit)

and so on.

Table A.1: Results for different thresholds, homozygous scenario and 60× coverage in
Section 4.1.3.

threshold T0F1 T0F2 T0FX T1F0 T1F1 T1F2 T1FX T2F0 T2F1 T2F2 T2FX

0 238 0 0 71 422 7 0 51 119 320 10
10−8 238 0 0 71 422 7 0 51 120 319 10
10−4 238 0 0 71 422 7 0 51 120 319 10
10−3 239 0 0 70 423 7 0 51 118 321 10
10−2 239 0 0 69 424 7 0 49 116 324 11
3 · 10−2 229 0 0 66 422 12 0 49 109 315 27
7 · 10−2 216 0 0 66 381 53 0 48 99 275 78
10−1 200 0 0 66 354 80 0 47 97 239 117
0.293151 132 3 0 70 202 196 32 44 58 122 276

43
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Table A.2: Results for different filter and option settings and homozygous scenario in
Section 4.1.3. The first columns show coverage (cov), minimal cluster size cs), number

of allowed mismatches (nm) and if the mappings are unique (u).

cov cs nm u T0F1 T0F2 T0FX T1F0 T1F1 T1F2 T1FX T2F0 T2F1 T2F2 T2FX

20 3 0 0 36 0 0 225 274 1 0 129 201 170 0
20 3 0 1 29 0 0 266 233 1 0 176 189 135 0
20 3 1 0 78 0 0 138 357 5 0 93 155 247 5
20 3 1 1 68 0 0 185 310 5 0 126 169 201 4
20 3 - 1 645 0 0 144 349 7 0 99 222 171 8

60 3 0 0 238 0 0 71 422 7 0 51 119 320 10
60 3 0 1 202 0 0 116 378 6 0 98 127 267 8
60 3 1 0 634 0 0 61 390 49 0 45 105 309 41
60 3 1 1 558 0 0 103 356 41 0 85 114 267 34
60 3 2 0 763 0 0 76 350 74 0 48 132 254 66
60 3 2 1 678 0 0 117 319 64 0 88 135 219 58
60 3 3 0 807 0 0 100 327 73 0 61 159 232 48
60 3 3 1 711 0 0 128 309 63 0 100 154 201 45
60 3 - 1 788 0 0 121 315 64 0 98 151 204 47

60 9 0 0 26 0 0 221 277 2 0 126 211 157 6
60 9 0 1 21 0 0 269 229 2 0 178 190 127 5
60 9 1 0 47 0 0 133 339 28 0 83 176 221 20
60 9 1 1 35 0 0 186 290 24 0 137 165 178 20
60 9 2 0 74 0 0 144 315 41 0 89 189 183 39
60 9 2 1 63 0 0 197 269 34 0 137 183 146 34
60 9 3 0 112 0 0 171 290 39 0 110 204 162 24
60 9 3 1 90 0 0 210 258 32 0 148 197 130 25
60 9 - 1 134 0 0 205 263 32 0 148 194 132 26

Table A.3: Results for different filter and option settings and heterozygous scenario in
Section 4.1.3.

cov cs nm u T0F1 T0F2 T0FX T1F0 T1F1 T1F2 T1FX T2F0 T2F1 T2F2 T2FX

20 3 0 0 31 0 0 225 274 1 0 178 216 106 0
20 3 1 0 78 0 0 138 357 5 0 116 197 186 1
60 3 0 0 209 0 0 71 423 6 0 69 139 288 4
60 3 1 0 638 0 0 61 391 48 0 57 124 293 26

Table A.4: Results with BreakDancer in Section 4.1.4.

cov scenario nm T0F1 T0F2 T0FX T1F0 T1F1 T1F2 T1FX T2F0 T2F1 T2F2 T2FX

20 hetero 1 17 0 0 286 214 0 0 196 90 214 0
20 hetero 0 4 0 0 372 128 0 0 286 63 151 0
20 homo 1 21 0 1 286 214 0 0 153 88 259 0
20 homo 0 4 0 1 370 130 0 0 225 69 206 0
60 hetero 1 316 0 0 123 377 0 0 101 95 304 0
60 hetero 0 84 0 0 172 328 0 0 126 91 283 0
60 homo 1 304 0 0 122 378 0 0 83 104 313 0
60 homo 0 94 0 0 171 329 0 0 101 94 305 0
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[27] Helga Thorvaldsdóttir, James T Robinson, and Jill P Mesirov. Integrative genomics

viewer (igv): high-performance genomics data visualization and exploration. Brief-

ings in bioinformatics, 14(2):178–192, 2013.

[28] James T Robinson, Helga Thorvaldsdóttir, Wendy Winckler, Mitchell Guttman,
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